Page 1390 - Williams Hematology ( PDFDrive )
P. 1390

1364  Part X:  Malignant Myeloid Diseases                           Chapter 87:  Myelodysplastic Syndromes           1365




                    163. Li Z, Cai X, Cai CL, et al: Deletion of Tet2 in mice leads to dysregulated hematopoi-    194. Bejar R, Lord A, Stevenson K, et al: TET2 mutations predict response to hypomethylat-
                     etic stem cells and subsequent development of myeloid malignancies. Blood 118(17):   ing agents in myelodysplastic syndrome patients. Blood 15:2014–2006, 2014.
                     4509–4518, 2011.                                     195. Murphy DM, Bejar R, Stevenson K, et al: NRAS mutations with low allele burden have
                    164. Kosmider O, Gelsi-Boyer V, Cheok M, et al: TET2 mutation is an independent favorable   independent prognostic significance for patients with lower risk myelodysplastic syn-
                     prognostic factor in myelodysplastic syndromes (MDS). Blood 114(15):3285–3291, 2009.  dromes. Leukemia 27(10):2077–2081, 2013.
                    165. Kosmider O, Gelsi-Boyer V, Ciudad M, et al: TET2 gene mutation is a frequent and     196. Takahashi K, Jabbour E, Wang X, et al: Dynamic acquisition of FLT3 or RAS altera-
                     adverse event in chronic myelomonocytic leukemia. Haematologica 94(12):1676–1681,   tions drive a subset of patients with lower risk MDS to secondary AML. Leukemia
                     2009.                                                 27(10):2081–2083, 2013.
                    166. Ward PS, Patel J, Wise DR, et al: The common feature of leukemia-associated IDH1 and     197. Saur SJ, Sangkhae V, Geddis AE, et al: Ubiquitination and degradation of the thrombo-
                     IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to   poietin receptor c-Mpl. Blood 115(6):1254–1263, 2010.
                     2-hydroxyglutarate. Cancer Cell 17(3):225–234, 2010.    198. Sanada M, Suzuki T, Shih LY, et al: Gain-of-function of mutated C-CBL tumour sup-
                    167. Figueroa ME, Abdel-Wahab O, Lu C, et al: Leukemic IDH1 and IDH2 mutations result   pressor in myeloid neoplasms. Nature 460(7257):904–908, 2009.
                     in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic     199. Makishima H, Cazzolli H, Szpurka H, et al: Mutations of e3 ubiquitin ligase cbl family
                     differentiation. Cancer Cell 18(6):553–567, 2010.     members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin
                    168. Koivunen P, Lee S, Duncan CG, et al: Transformation by the (R)-enantiomer of   Oncol 27(36):6109–6116, 2009.
                     2-hydroxyglutarate linked to EGLN activation. Nature 483(7390):484–488, 2012.    200. Loh ML, Martinelli S, Cordeddu V, et al: Acquired PTPN11 mutations occur rarely in
                    169. Cairns RA, Mak TW: Oncogenic isocitrate dehydrogenase mutations: Mechanisms,   adult patients with myelodysplastic syndromes and chronic myelomonocytic leukemia.
                     models, and clinical opportunities. Cancer Discov 3(7):730–741, 2013.  Leuk Res 29(4):459–462, 2005.
                    170. Xu W, Yang H, Liu Y, et al: Oncometabolite 2-hydroxyglutarate is a competitive inhibi-    201. Sakaguchi H, Okuno Y, Muramatsu H, et al: Exome sequencing identifies secondary
                     tor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30, 2011.  mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia.  Nat Genet
                    171. Lu C, Ward PS, Kapoor GS, et al: IDH mutation impairs histone demethylation and   45(8):937–941, 2013.
                     results in a block to cell differentiation. Nature 483(7390):474–478, 2012.    202. Broseus J, Alpermann T, Wulfert M, et al: Age, JAK2(V617F) and SF3B1 mutations are
                    172. Sasaki M, Knobbe CB, Munger JC, et al: IDH1(R132H) mutation increases murine hae-  the main predicting factors for survival in refractory anaemia with ring sideroblasts
                     matopoietic progenitors and alters epigenetics. Nature 488(7413):656–659, 2012.  and marked thrombocytosis. Leukemia 27(9):1826–1831, 2013.
                    173. Patnaik MM, Hanson CA, Hodnefield JM, et al: Differential prognostic effect of IDH1     203. Hellstrom-Lindberg E, Cazzola M: The role of JAK2 mutations in RARS and other
                     versus IDH2 mutations in myelodysplastic syndromes: A Mayo Clinic study of 277   MDS. Hematology Am Soc Hematol Educ Program 52–59, 2008.
                     patients. Leukemia 26(1):101–105, 2012.              204. Kon A, Shih LY, Minamino M, et al: Recurrent mutations in multiple components of the
                    174. Losman JA, Looper RE, Koivunen P, et al: (R)-2-hydroxyglutarate is sufficient to pro-  cohesin complex in myeloid neoplasms. Nat Genet 45(10):1232–1237, 2013.
                     mote leukemogenesis and its effects are reversible. Science 339(6127):1621–1625, 2013.    205. Thota S, Viny AD, Makishima H, et al: Genetic alterations of the cohesin complex genes
                    175. Score J, Hidalgo-Curtis C, Jones AV, et al: Inactivation of polycomb repressive com-  in myeloid malignancies. Blood 8:2014–2004, 2014.
                     plex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neo-    206. Janowska-Wieczorek A, Belch AR, Jacobs A, et al: Increased circulating colony-stim-
                     plasms. Blood 119(5):1208–1213, 2012.                 ulating factor-1 in patients with preleukemia, leukemia, and lymphoid malignancies.
                    176. Khan SN, Jankowska AM, Mahfouz R, et al: Multiple mechanisms deregulate EZH2   Blood 77(8):1796–1803, 1991.
                     and histone H3 lysine 27 epigenetic changes in myeloid malignancies.  Leukemia     207. Verhoef GE, De Schouwer P, Ceuppens JL, et al: Measurement of serum cytokine levels
                     27(6):1301–1309, 2013.                                in patients with myelodysplastic syndromes. Leukemia 6(12):1268–1272, 1992.
                    177. Itzykson R, Kosmider O, Renneville A, et al: Prognostic score including gene mutations     208. Bowen D, Yancik S, Bennett L, et al: Serum stem cell factor concentration in patients
                     in chronic myelomonocytic leukemia. J Clin Oncol 31(19):2428–2436, 2013.  with myelodysplastic syndromes. Br J Haematol 85(1):63–66, 1993.
                    178. Thol F, Friesen I, Damm F, et al: Prognostic significance of ASXL1 mutations in patients     209. Wei Y, Dimicoli S, Bueso-Ramos C, et al: Toll-like receptor alterations in myelodysplas-
                     with myelodysplastic syndromes. J Clin Oncol 29(18):2499–2506, 2011.  tic syndrome. Leukemia 27(9):1832–1840, 2013.
                    179. Abdel-Wahab O, Adli M, LaFave Lindsay M, et al: ASXL1 mutations promote mye-    210. Chen X, Eksioglu EA, Zhou J, et al: Induction of myelodysplasia by myeloid-derived
                     loid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22(2):   suppressor cells. J Clin Invest 123(11):4595–4611, 2013.
                     180–193, 2012.                                       211. Epperson  DE,  Nakamura  R,  Saunthararajah  Y,  et  al:  Oligoclonal  T  cell  expan-
                    180. Micol JB, Abdel-Wahab O: Collaborating constitutive and somatic genetic events in   sion in myelodysplastic syndrome: Evidence for an autoimmune process.  Leuk  Res
                     myeloid malignancies: ASXL1 mutations in patients with germline GATA2 mutations.   25(12):1075–1083, 2001.
                     Haematologica 99(2):201–203, 2014.                   212. Kochenderfer JN, Kobayashi S, Wieder ED, et al: Loss of T-lymphocyte clonal domi-
                    181. West RR, Hsu AP, Holland SM, Cuellar-Rodriguez J, Hickstein DD: Acquired ASXL1   nance in patients with myelodysplastic syndrome responsive to immunosuppression.
                     mutations are common in patients with inherited GATA2 mutations and correlate with   Blood 100(10):3639–3645, 2002.
                     myeloid transformation. Haematologica 99(2):276–281, 2014.    213. Kulasekararaj AG, Jiang J, Smith AE, et al: Somatic mutations identify a sub-group
                    182. Harada H, Harada Y, Niimi H, et al: High incidence of somatic mutations in the AML1/  of aplastic anemia patients that progress to myelodysplastic syndrome.  Blood 18:
                     RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia   2014–2005, 2014.
                     with myelodysplasia. Blood 103(6):2316–2324, 2004.    214. Jerez A, Clemente MJ, Makishima H, et al: STAT3 mutations indicate the presence of
                    183. Harada Y, Harada H: Molecular pathways mediating MDS/AML with focus on AML1/  subclinical T-cell clones in a subset of aplastic anemia and myelodysplastic syndrome
                     RUNX1 point mutations. J Cell Physiol 220(1):16–20, 2009.  patients. Blood 122(14):2453–2459, 2013.
                    184. Kuo MC, Liang DC, Huang CF, et al: RUNX1 mutations are frequent in chronic myelo-    215. Steensma DP, Bennett JM: The myelodysplastic syndromes: Diagnosis and treatment.
                     monocytic leukemia and mutations at the C-terminal region might predict acute mye-  Mayo Clin Proc 81(1):104–130, 2006.
                     loid leukemia transformation. Leukemia 23(8):1426–1431, 2009.    216. Steensma DP, Heptinstall KV, Johnson VM, et al: Common troublesome symptoms
                    185. Preudhomme C, Renneville A, Bourdon V, et al: High frequency of RUNX1 biallelic   and their impact on quality of life in patients with myelodysplastic syndromes (MDS):
                     alteration in acute myeloid leukemia secondary to familial platelet disorder.  Blood   Results of a large internet-based survey. Leuk Res 32(5):691–698, 2008.
                     113(22):5583–5587, 2009.                             217. Linman JW, Bagby GC Jr: The preleukemic syndrome (hemopoietic dysplasia). Cancer
                    186. Owen C: Insights into familial platelet disorder with propensity to myeloid malignancy   42(2 Suppl):854–864, 1978.
                     (FPD/AML). Leuk Res 34(2):141–142, 2010.             218. Bagby  GC:  The  preleukemic  syndrome  (hematopoietic  dysplasia).  Blood  Rev  2(3):
                    187. Smith ML, Cavenagh JD, Lister TA, Fitzgibbon J: Mutation of CEBPA in familial acute   194–205, 1988.
                     myeloid leukemia. N Engl J Med 351(23):2403–2407, 2004.    219. Noel P, Solberg LA Jr: Myelodysplastic syndromes. Pathogenesis, diagnosis and treat-
                    188. Padron E, Yoder S, Kunigal S, et al: ETV6 and signaling gene mutations are associated   ment. Crit Rev Oncol Hematol 12(3):193–215, 1992.
                     with secondary transformation of myelodysplastic syndromes to chronic myelomono-    220. Park S, Merlat A, Guesnu M, et al: Pure red cell aplasia associated with myelodysplastic
                     cytic leukemia. Blood 123(23):3675–3677, 2014.        syndromes. Leukemia 14(9):1709–1710, 2000.
                    189. Ostergaard P, Simpson MA, Connell FC, et al: Mutations in GATA2 cause primary     221. Choi JW, Kim Y, Fujino M, Ito M: Significance of fetal hemoglobin-containing ery-
                     lymphedema associated with a predisposition to acute myeloid leukemia (Emberger   throblasts (F blasts) and the F blast/F cell ratio in myelodysplastic syndromes. Leukemia
                     syndrome). Nat Genet 43(10):929–931, 2011.            16(8):1478–1483, 2002.
                    190. Dickinson RE, Griffin H, Bigley V, et al: Exome sequencing identifies GATA-2 muta-    222. Kornberg A, Goldfarb A: Preleukemia manifested by hemolytic anemia with pyru-
                     tion as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood   vate-kinase deficiency. Arch Intern Med 146(4):785–786, 1986.
                     118(10):2656–2658, 2011.                             223. Harris JW, Koscick R, Lazarus HM, et al: Leukemia arising out of paroxysmal nocturnal
                    191. Dickinson RE, Milne P, Jardine L, et al: The evolution of cellular deficiency in GATA2   hemoglobinuria. Leuk Lymphoma 32(5–6):401–426, 1999.
                     mutation. Blood 123(6):863–874, 2014.                224. Lopez M, Bonnetgajdos M, Reviron M, et al: An acute-leukemia augured before clinical
                    192. Bejar R, Stevenson KE, Caughey B, et al: Somatic mutations predict poor outcome in   signs by blood-group antigen abnormalities and low-levels of A-blood and H-blood
                     patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation.   group transferase activities in erythrocytes. Br J Haematol 63(3):535–539, 1986.
                     J Clin Oncol 32(25):2691–2698, 2014.                 225. Steensma DP, Higgs DR, Fisher CA, Gibbons RJ: Acquired somatic ATRX mutations
                    193. Bally C, Ades L, Renneville A, et al: Prognostic value of TP53 gene mutations in mye-  in myelodysplastic syndrome associated with alpha thalassemia (ATMDS) convey a
                     lodysplastic syndromes and acute myeloid leukemia treated with azacitidine. Leuk Res   more severe hematologic phenotype than germline ATRX mutations. Blood 103(6):
                     38(7):751–755, 2014.                                  2019–2026, 2004.







          Kaushansky_chapter 87_p1341-1372.indd   1365                                                                  9/21/15   11:06 AM
   1385   1386   1387   1388   1389   1390   1391   1392   1393   1394   1395