Page 1389 - Williams Hematology ( PDFDrive )
P. 1389

1364           Part X:  Malignant Myeloid Diseases                                                                                                                               Chapter 87:  Myelodysplastic Syndromes          1365




                 100. Ernst T, Chase AJ, Score J, et al: Inactivating mutations of the histone methyltransferase     129. Meggendorfer M, Bacher U, Alpermann T, et al: SETBP1 mutations occur in 9% of
                  gene EZH2 in myeloid disorders. Nat Genet 42(8):722–726, 2010.  MDS/MPN and in 4% of MPN cases and are strongly associated with atypical CML,
                 101. Makishima H, Jankowska AM, Tiu RV, et al: Novel homo- and hemizygous mutations   monosomy 7, isochromosome i(17)(q10), ASXL1 and CBL mutations.  Leukemia
                  in EZH2 in myeloid malignancies. Leukemia 24(10):1799–1804, 2010.  27(9):1852–1860, 2013.
                 102. Nikoloski G, Langemeijer SM, Kuiper RP, et al: Somatic mutations of the histone meth-    130. Valcarcel D, Adema V, Sole F, et al: Complex, not monosomal, karyotype is the cytoge-
                  yltransferase gene EZH2 in myelodysplastic syndromes.  Nat Genet 42(8):665–667,   netic marker of poorest prognosis in patients with primary myelodysplastic syndrome.
                  2010.                                                  J Clin Oncol 31(7):916–922, 2013.
                 103. Chen C, Liu Y, Rappaport AR, et al: MLL3 is a haploinsufficient 7q tumor suppressor in     131. Schanz J, Tuchler H, Sole F, et al: Monosomal karyotype in MDS: Explaining the poor
                  acute myeloid leukemia. Cancer Cell 25(5):652–665, 2014.  prognosis? Leukemia 27(10):1988–1995, 2013.
                 104. Wong CC, Martincorena I, Rust AG, et al: Inactivating CUX1 mutations promote       132. Cluzeau  T,  Mounier  N,  Karsenti  JM, et al:  Monosomal karyotype improves IPSS-R
                  tumorigenesis. Nat Genet 46(1):33–38, 2014.            stratification in MDS and AML patients treated with azacitidine.  Am J Hematol
                 105. Wong JC, Zhang Y, Lieuw KH, et al: Use of chromosome engineering to model a seg-  88(9):780–783, 2013.
                  mental deletion of chromosome band 7q22 found in myeloid malignancies.  Blood     133. Patnaik MM, Hanson CA, Hodnefield JM, et al: Monosomal karyotype in myelodys-
                  115(22):4524–4532, 2010.                               plastic syndromes, with or without monosomy 7 or 5, is prognostically worse than an
                 106. Saumell S, Florensa L, Luno E, et al: Prognostic value of trisomy 8 as a single anomaly   otherwise complex karyotype. Leukemia 25(2):266–270, 2011.
                  and the influence of additional cytogenetic aberrations in primary myelodysplastic syn-    134. Bejar R, Stevenson K, Abdel-Wahab O, et al: Clinical effect of point mutations in myel-
                  dromes. Br J Haematol 159(3):311–321, 2012.            odysplastic syndromes. N Engl J Med 364(26):2496–2506, 2011.
                 107. Nilsson L, Astrand-Grundstrom I, Anderson K, et al: Involvement and functional     135. Haferlach T, Nagata Y, Grossmann V, et al: Landscape of genetic lesions in 944 patients
                  impairment of the CD34(+)CD38(–)Thy-1(+) hematopoietic stem cell pool in myelo-  with myelodysplastic syndromes. Leukemia 28(2):241–247, 2014.
                  dysplastic syndromes with trisomy 8. Blood 100(1):259–267, 2002.    136. Bejar R: Clinical and genetic predictors of prognosis in myelodysplastic syndromes.
                 108. Sloand EM, Mainwaring L, Fuhrer M, et al: Preferential suppression of trisomy 8 com-  Haematologica 99(6):956–964, 2014.
                  pared with normal hematopoietic cell growth by autologous lymphocytes in patients     137. Malcovati L, Papaemmanuil E, Ambaglio I, et al: Driver somatic mutations identify
                  with trisomy 8 myelodysplastic syndrome. Blood 106(3):841–851, 2005.  distinct disease entities within myeloid neoplasms with myelodysplasia.  Blood 26:
                 109. Sloand EM, Melenhorst JJ, Tucker ZC, et al: T-cell immune responses to Wilms   2014–2003, 2014.
                  tumor 1 protein in myelodysplasia responsive to immunosuppressive therapy. Blood     138. Walter MJ, Shen D, Ding L, et al: Clonal architecture of secondary acute myeloid
                  117(9):2691–2699, 2011.                                leukemia. N Engl J Med 366(12):1090–1098, 2012.
                 110. Sloand EM, Wu CO, Greenberg P, Young N, Barrett J: Factors affecting response and     139. Walter MJ, Shen D, Shao J, et al: Clonal diversity of recurrently mutated genes in myel-
                  survival in patients with myelodysplasia treated with immunosuppressive therapy. J   odysplastic syndromes. Leukemia 27(6):1275–1282, 2013.
                  Clin Oncol 26(15):2505–2511, 2008.                    140. Yoshida K, Sanada M, Shiraishi Y, et al: Frequent pathway mutations of splicing
                 111. Handa T, Nakatsue T, Baba M, et al: Clinical features of three cases with pulmonary   machinery in myelodysplasia. Nature 478(7367):64–69, 2011.
                  alveolar  proteinosis  secondary  to  myelodysplastic  syndrome  developed  during  the     141. Bejar R, Stevenson KE, Caughey BA, et al: Validation of a prognostic model and the
                  course of Behcet’s disease. Respir Investig 52(1):75–79, 2014.  impact of mutations in patients with lower-risk myelodysplastic syndromes.  J Clin
                 112. Kawabata H, Sawaki T, Kawanami T, et al: Myelodysplastic syndrome complicated with   Oncol 30(27):3376–3382, 2012.
                  inflammatory intestinal ulcers: Significance of trisomy 8. Intern Med 45(22):1309–1314,     142. Papaemmanuil E, Cazzola M, Boultwood J, et al: Somatic SF3B1 mutation in myelodys-
                  2006.                                                  plasia with ring sideroblasts. N Engl J Med 365(15):1384–1395, 2011.
                 113. Toyonaga T, Nakase H, Matsuura M, et al: Refractoriness of intestinal Behcet’s disease     143. Baliakas P, Hadzidimitriou A, Sutton LA, et al: Recurrent mutations refine prognosis in
                  with myelodysplastic syndrome involving trisomy 8 to medical therapies—Our case   chronic lymphocytic leukemia. Leukemia 19(10):196, 2014.
                  experience and review of the literature. Digestion 88(4):217–221, 2013.    144. Scott LM, Rebel VI: Acquired mutations that affect pre-mRNA splicing in hematologic
                 114. Schanz J, Tuchler H, Sole F, et al: New comprehensive cytogenetic scoring system for   malignancies and solid tumors. J Natl Cancer Inst 105(20):1540–1549, 2013.
                  primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia     145. Furney SJ, Pedersen M, Gentien D, et al: SF3B1 mutations are associated with alterna-
                  after MDS derived from an international database merge. J Clin Oncol 30(8):820–829,   tive splicing in uveal melanoma. Cancer Discov 3(10):1122–1129, 2013.
                  2012.                                                 146. Graubert TA, Shen D, Ding L, et al: Recurrent mutations in the U2AF1 splicing factor
                 115. Braun T, de Botton S, Taksin AL, et al: Characteristics and outcome of myelodysplastic   in myelodysplastic syndromes. Nat Genet 44(1):53–57, 2011.
                  syndromes (MDS) with isolated 20q deletion: A report on 62 cases. Leuk Res 35(7):     147. Przychodzen B, Jerez A, Guinta K, et al: Patterns of missplicing due to somatic U2AF1
                  863–867, 2011.                                         mutations in myeloid neoplasms. Blood 122(6):999–1006, 2013.
                 116. Liu YC, Ito Y, Hsiao HH, et al: Risk factor analysis in myelodysplastic syndrome     148. Patnaik  MM,  Lasho  TL,  Finke  CM,  et  al:  Spliceosome  mutations  involving  SRSF2,
                  patients with del(20q): Prognosis revisited. Cancer Genet Cytogenet 171(1):9–16, 2006.  SF3B1, and U2AF35 in chronic myelomonocytic leukemia: Prevalence, clinical cor-
                 117. Wang PW, Eisenbart JD, Espinosa R 3rd, et al: Refinement of the smallest commonly   relates, and prognostic relevance. Am J Hematol 88(3):201–206, 2013.
                  deleted segment of chromosome 20 in malignant myeloid diseases and development of     149. Ley TJ, Ding L, Walter MJ, et al: DNMT3A mutations in acute myeloid leukemia. N Engl
                  a PAC-based physical and transcription map. Genomics 67(1):28–39, 2000.  J Med 363(25):2424–2433, 2010.
                 118. Huh J, Tiu RV, Gondek LP, et al: Characterization of chromosome arm 20q abnormali-    150. Walter MJ, Ding L, Shen D, et al: Recurrent DNMT3A mutations in patients with mye-
                  ties in myeloid malignancies using genome-wide single nucleotide polymorphism array   lodysplastic syndromes. Leukemia 25(7):1153–1158, 2011.
                  analysis. Genes Chromosomes Cancer 49(4):390–399, 2010.    151. Kim SJ, Zhao H, Hardikar S, et al: A DNMT3A mutation common in AML exhibits
                 119. Clarke M, Dumon S, Ward C, et al: MYBL2 haploinsufficiency increases susceptibility   dominant-negative effects in murine ES cells. Blood 122(25):4086–4089, 2013.
                  to age-related haematopoietic neoplasia. Leukemia 27(3):661–670, 2013.    152. Busque L, Patel JP, Figueroa ME, et al: Recurrent somatic TET2 mutations in normal
                 120. Heinrichs S, Conover LF, Bueso-Ramos CE, et al: MYBL2 is a sub-haploinsufficient   elderly individuals with clonal hematopoiesis. Nat Genet 44(11):1179–1181, 2012.
                  tumor suppressor gene in myeloid malignancy. Elife 2(2):00825, 2013.    153. Bejar R, Stevenson KE, Caughey BA, et al: Validation of a prognostic model and the
                 121. Gelsi-Boyer V, Trouplin V, Adelaide J, et al: Mutations of polycomb-associated gene   impact of mutations in patients with lower-risk myelodysplastic syndromes.  J Clin
                  ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J   Oncol 30(27):3376–3382, 2012.
                  Haematol 145(6):788–800, 2009.                        154. Thol F, Winschel C, Ludeking A, et al: Rare occurrence of DNMT3A mutations in mye-
                 122. Abdel-Wahab O, Gao J, Adli M, et al: Deletion of Asxl1 results in myelodysplasia and   lodysplastic syndromes. Haematologica 96(12):1870–1873, 2011.
                  severe developmental defects in vivo. J Exp Med 210(12):2641–2659, 2013.    155. Tahiliani M, Koh KP, Shen Y, et al: Conversion of 5-methylcytosine to 5-hydroxymethyl-
                 123. Bacher U, Haferlach T, Schnittger S, et al: Investigation of 305 patients with myelodys-  cytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935, 2009.
                  plastic syndromes and 20q deletion for associated cytogenetic and molecular genetic     156. Ito S, Shen L, Dai Q, et al: Tet proteins can convert 5-methylcytosine to 5-formylcyto-
                  lesions and their prognostic impact. Br J Haematol 164(6):822–833, 2014.  sine and 5-carboxylcytosine. Science 333(6047):1300–1303, 2011.
                 124. Gupta R, Soupir CP, Johari V, Hasserjian RP: Myelodysplastic syndrome with isolated     157. Jankowska AM, Szpurka H, Tiu RV, et al: Loss of heterozygosity 4q24 and TET2
                  deletion of chromosome 20q: An indolent disease with minimal morphological dyspla-  mutations  associated  with myelodysplastic/myeloproliferative neoplasms.  Blood
                  sia and frequent thrombocytopenic presentation. Br J Haematol 139(2):265–268, 2007.  113(25):6403–6410, 2009.
                 125. Abeliovich D, Yehuda O, Ben-Neriah S, Or R: Loss of Y chromosome. An age-related     158. Ko M, Huang Y, Jankowska AM, et al: Impaired hydroxylation of 5-methylcytosine in
                  event or a cytogenetic marker of a malignant clone? Cancer Genet Cytogenet 76(1):   myeloid cancers with mutant TET2. Nature 468(7325):839–843, 2010.
                  70–71, 1994.                                          159. Yamazaki J, Taby R, Vasanthakumar A, et al: Effects of TET2 mutations on DNA meth-
                 126. Wong AK, Fang B, Zhang L, et al: Loss of the Y chromosome: An age-related or clonal   ylation in chronic myelomonocytic leukemia. Epigenetics 7(2):201–207, 2012.
                  phenomenon in acute myelogenous leukemia/myelodysplastic syndrome? Arch Pathol     160. Ko M, Bandukwala HS, An J, et al: Ten-eleven-translocation 2 (TET2) negatively reg-
                  Lab Med 132(8):1329–1332, 2008.                        ulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl
                 127. Wiktor A, Rybicki BA, Piao ZS, et al: Clinical significance of Y chromosome loss in   Acad Sci U S A 108(35):14566–14571, 2011.
                  hematologic disease. Genes Chromosomes Cancer 27(1):11–16, 2000.    161. Moran-Crusio K, Reavie L, Shih A, et al: Tet2 loss leads to increased hematopoietic
                 128. Kanagal-Shamanna R, Bueso-Ramos  CE, Barkoh B,  et al: Myeloid neoplasms  with   stem cell self-renewal and myeloid transformation. Cancer Cell 20(1):11–24, 2011.
                  isolated isochromosome 17q represent a clinicopathologic entity associated with       162. Quivoron C, Couronne L, Della Valle V, et al: TET2 inactivation results in pleiotropic
                  myelodysplastic/myeloproliferative features, a high risk of leukemic transformation,   hematopoietic abnormalities in mouse and is a recurrent event during human lympho-
                  and wild-type TP53. Cancer 118(11):2879–2888, 2012.    magenesis. Cancer Cell 20(1):25–38, 2011.







          Kaushansky_chapter 87_p1341-1372.indd   1364                                                                  9/21/15   11:06 AM
   1384   1385   1386   1387   1388   1389   1390   1391   1392   1393   1394