Page 1930 - Williams Hematology ( PDFDrive )
P. 1930
1904 Part XII: Hemostasis and Thrombosis Chapter 112: Platelet Morphology, Biochemistry, and Function 1905
1261. Hemler ME: Tetraspanin functions and associated microdomains. Nat Rev Mol Cell 1292. Starke R, Cramer E, Harrison P: Expression of cell-associated prion protein on normal
Biol 6(10):801–811, 2005. human platelets. Br J Haematol 110(3):748–750, 2000.
1262. Israels SJ, McMillan-Ward EM: Platelet tetraspanin complexes and their association 1293. Prevost N, et al: Interactions between Eph kinases and ephrins provide a mechanism
with lipid rafts. Thromb Haemost 98(5):1081–1087, 2007. to support platelet aggregation once cell-to-cell contact has occurred. Proc Natl Acad
1263. Israels SJ, McMillan-Ward EM: Palmitoylation supports the association of tetraspanin Sci U S A 99(14):9219–9224, 2002.
CD63 with CD9 and integrin alphaIIbbeta3 in activated platelets. Thromb Res 1294. Prevost N, et al: Signaling by ephrinB1 and Eph kinases in platelets promotes Rap1
125(2):152–158, 2010. activation, platelet adhesion, and aggregation via effector pathways that do not require
1264. Goschnick MW, Jackson DE: Tetraspanins-structural and signalling scaffolds that reg- phosphorylation of ephrinB1. Blood 103(4):1348–1355, 2004.
ulate platelet function. Mini Rev Med Chem 7(12):1248–1254, 2007. 1295. Prevost N, et al: Eph kinases and ephrins support thrombus growth and stability
1265. Goschnick MW, et al: Impaired “outside-in” integrin alphaIIbbeta3 signaling and by regulating integrin outside-in signaling in platelets. Proc Natl Acad Sci U S A
thrombus stability in TSSC6-deficient mice. Blood 108(6):1911–1918, 2006. 102(28):9820–9825, 2005.
1266. Protty MB, et al: Identification of Tspan9 as a novel platelet tetraspanin and the 1296. dem Borne AE, et al: Thrombopoietin and its receptor: Structure, function and role in
collagen receptor GPVI as a component of tetraspanin microdomains. Biochem J the regulation of platelet production. Baillieres Clin Haematol 11(2):409–426, 1998.
417(1):391–400, 2009. 1297. Fielder PJ, et al: Human platelets as a model for the binding and degradation of throm-
1267. Boucheix C, et al: Molecular cloning of the CD9 antigen. A new family of cell surface bopoietin. Blood 89(8):2782–2788, 1997.
proteins. J Biol Chem 266(1):117–122, 1991. 1298. Kaushansky K, Thrombopoietin: A tool for understanding thrombopoiesis. J Thromb
1268. Hato T, et al: Exposure of platelet fibrinogen receptors by a monoclonal antibody to Haemost 1(7):1587–1592, 2003.
CD9 antigen. Blood 72(1):224–229, 1988. 1299. Kaushansky K: Historical review: Megakaryopoiesis and thrombopoiesis. Blood
1269. Lanza F, et al: CDNA cloning and expression of platelet p24/CD9. Evidence for a new 111(3):981–986, 2008.
family of multiple membrane-spanning proteins. J Biol Chem 266(16):10638–10645, 1300. Chen J, et al: Regulation of platelet activation in vitro by the c-Mpl ligand, thrombo-
1991. poietin. Blood 86(11):4054–4062, 1995.
1270. Brisson C, et al: Co-localization of CD9 and GPIIb-IIIa (alpha IIb beta 3 integrin) 1301. Ezumi Y, Takayama H, Okuma M: Thrombopoietin, c-Mpl ligand, induces tyrosine
on activated platelet pseudopods and alpha-granule membranes. Histochem J, 29(2): phosphorylation of Tyk2, JAK2, and STAT3, and enhances agonists-induced aggrega-
153–165, 1997. tion in platelets in vitro. FEBS Lett 374(1):48–52, 1995.
1271. Hato T, et al: Induction of platelet Ca2+ influx and mobilization by a monoclonal 1302. Kojima H, et al: Modulation of platelet activation in vitro by thrombopoietin. Thromb
antibody to CD9 antigen. Blood 75(5):1087–1091, 1990. Haemost 74(6):1541–1545, 1995.
1272. Jennings LK, et al: The activation of human platelets mediated by anti-human platelet 1303. Kubota Y, et al: Thrombopoietin modulates platelet activation in vitro through
p24/CD9 monoclonal antibodies. J Biol Chem 265:3815–3822, 1990. protein-tyrosine phosphorylation. Stem Cells, 14(4):439–444, 1996.
1273. Worthington RE, Carroll RC, Boucheix C: Platelet activation by CD9 monoclonal 1304. Oda A, et al: Thrombopoietin primes human platelet aggregation induced by shear
antibodies is mediated by the Fc gamma II receptor. Br J Haematol 74(2):216–222, stress and by multiple agonists. Blood 87(11):4664–4670, 1996.
1990. 1305. Rodriguez-Linares B, Watson SP: Thrombopoietin potentiates activation of human
1274. Slupsky JR, et al: Evidence that monoclonal antibodies against CD9 antigen induce platelets in association with JAK2 and TYK2 phosphorylation. Biochem J 316
specific association between CD9 and the platelet glycoprotein IIb-IIIa complex. J Biol (Pt 1):93–98, 1996.
Chem 264(21):12289–12293, 1989. 1306. Fox NE, et al: Compound heterozygous c-Mpl mutations in a child with congenital
1275. Dale GL, Remenyi G, Friese P: Tetraspanin CD9 is required for microparticle release amegakaryocytic thrombocytopenia: Functional characterization and a review of the
from coated-platelets. Platelets 20(6):361–366, 2009. literature. Exp Hematol 37(4):495–503, 2009.
1276. Mangin PH, et al: CD9 negatively regulates integrin alphaIIbbeta3 activation and 1307. Kilpivaara O, Levine RL: JAK2 and MPL mutations in myeloproliferative neoplasms:
could thus prevent excessive platelet recruitment at sites of vascular injury. J Thromb Discovery and science. Leukemia 22(10):1813–1817, 2008.
Haemost 7(5):900–902, 2009. 1308. Aiken ML, et al: Effects of OKM5, a monoclonal antibody to glycoprotein IV, on plate-
1277. Nishibori M, et al: The protein CD63 is in platelet dense granules, is deficient in a let aggregation and thrombospondin surface expression. Blood 76(12):2501–2509,
patient with Hermansky-Pudlak syndrome, and appears identical to granulophysin. J 1990.
Clin Invest 91:1775–1782, 1993. 1309. Daviet L, McGregor JL: Vascular biology of CD36: Roles of this new adhesion mole-
1278. Metzelaar MJ, et al: CD63 antigen. A novel lysosomal membrane glycoprotein, cloned cule family in different disease states. Thromb Haemost 78(1):65–69, 1997.
by a screening procedure for intracellular antigens in eukaryotic cells. J Biol Chem 1310. Febbraio M, Silverstein RL: CD36: Implications in cardiovascular disease. Int J Bio-
266(5):3239–3245, 1991. chem Cell Biol 39(11):2012–2030, 2007.
1279. Fitter S, et al: Molecular cloning of cDNA encoding a novel platelet-endothelial cell 1311. Legrand C, Pidard D, Beiso P, et al: Interaction of a monoclonal antibody to glyco-
tetra-span antigen, PETA-3. Blood 86(4):1348–1355, 1995. protein IV (CD36) with human platelets and its effect on platelet function. Platelets
1280. Roberts JJ, et al: Platelet activation induced by a murine monoclonal antibody directed 2(2):99–105, 1991.
against a novel tetra-span antigen. Br J Haematol 89(4):853–860, 1995. 1312. Tandon NN, et al: Isolation and characterization of platelet glycoprotein IV (CD36). J
1281. Sincock PM, Mayrhofer G, Ashman LK: Localization of the transmembrane 4 super- Biol Chem 1989;264(13):7570–7575, 1991.
family (TM4SF) member PETA-3 (CD151) in normal human tissues: Comparison 1313. Valiyaveettil M, Podrez EA: Platelet hyperreactivity, scavenger receptors and atheroth-
with CD9, CD63, and alpha5beta1 integrin. J Histochem Cytochem 45(4):515–525, rombosis. J Thromb Haemost 7(Suppl 1):218–221, 2009.
1997. 1314. Oquendo P, Hundt E, Lawler J, Seed B: CD36 directly mediates cytoadherence of Plas-
1282. Lau LM, et al: The tetraspanin superfamily member, CD151 regulates outside-in inte- modium falciparum infected erythrocytes. Cell 58(1):95–101, 1989.
grin alphaIIbbeta3 signalling and platelet function. Blood 104(8):2368–2375, 2004. 1315. Huang MM, et al: Membrane glycoprotein IV (CD36) is physically associated with the
1283. Orlowski E, et al: A platelet tetraspanin superfamily member, CD151, is required Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci U S
for regulation of thrombus growth and stability in vivo. J Thromb Haemost 7(12): A 88(17):7844–7848, 1991.
2074–2084, 2009. 1316. Taketani T, et al: Neonatal isoimmune thrombocytopenia caused by type I CD36 defi-
1284. Polgar J, et al: Additional GPI-anchored glycoproteins on human platelets that are ciency having novel splicing isoforms of the CD36 gene. Eur J Haematol 81(1):70–74,
absent or deficient in paroxysmal nocturnal haemoglobinuria. FEBS Lett 327(1): 2008.
49–53, 1993. 1317. Thorne RF, et al: CD36 forms covalently associated dimers and multimers in platelets
1285. Hwang SM, Kim MJ, Chang HE, et al: Human platelet antigen genotyping and expres- and transfected COS-7 cells. Biochem Biophys Res Commun 240(3):812–818, 1997.
sion of CD109 (human platelet antigen 15) mRNA in various human cell types. 1318. Thibert V, et al: Increased platelet CD36 constitutes a common marker in myeloprolif-
Biomed Res Int 2013:946403, 2013. erative disorders. Br J Haematol 91(3):618–624, 1995.
1286. Kelton JG, et al: ABH antigens on human platelets: Expression on the glycosyl phos- 1319. Asch AS, et al: Analysis of CD36 binding domains: Ligand specificity controlled by
phatidylinositol-anchored protein CD109. J Lab Clin Med 1998;132(2):142–148, 2013. dephosphorylation of an ectodomain. Science 262(5138):1436–1440, 1993.
1287. Grunewald M, et al: The platelet function defect of paroxysmal nocturnal haemoglo- 1320. Aiken JW, Ginsberg MH, Plow EF: Mechanisms for expression of thrombospondin on
binuria. Platelets 15(3):145–154, 2004. the platelet surface. Semin Thromb Hemost 13:307–316, 1987.
1288. Jin JY, et al: Glycosylphosphatidyl-inositol (GPI)-linked protein deficiency on the 1321. Collot-Teixeira S, et al: CD36 and macrophages in atherosclerosis. Cardiovasc Res
platelets of patients with aplastic anaemia and paroxysmal nocturnal haemoglobi- 75(3):468–477, 2007.
nuria: Two distinct patterns correlating with expression on neutrophils. Br J Haematol 1322. Yamashita S, et al: Physiological and pathological roles of a multi-ligand receptor
96(3):493–496, 1997. CD36 in atherogenesis; insights from CD36-deficient patients. Mol Cell Biochem
1289. Barclay GR, et al: Distribution of cell-associated prion protein in normal adult blood 299(1–2):19–22, 2007.
determined by flow cytometry. Br J Haematol 107(4):804–814, 1999. 1323. Chen K, et al: A specific CD36-dependent signaling pathway is required for platelet
1290. Holada K, et al: Increased expression of phosphatidylinositol-specific phospholi- activation by oxidized low-density lipoprotein. Circ Res 102(12):1512–1519, 2008.
pase C resistant prion proteins on the surface of activated platelets. Br J Haematol 1324. Korporaal SJ, et al: Platelet activation by oxidized low density lipoprotein is mediated
103(1):276–282, 1998. by CD36 and scavenger receptor-A. Arterioscler Thromb Vasc Biol 27(11):2476–2483,
1291. MacGregor I, et al: Application of a time-resolved fluoroimmunoassay for the analy- 2007.
sis of normal prion protein in human blood and its components. Vox SangVox Sang 1325. Podrez EA, et al: Platelet CD36 links hyperlipidemia, oxidant stress and a prothrom-
77(2):88–96, 1999. botic phenotype. Nat Med 13(9):1086–1095, 2007.
Kaushansky_chapter 112_p1829-1914.indd 1905 17/09/15 3:30 pm

