Page 1930 - Williams Hematology ( PDFDrive )
P. 1930

1904  Part XII:  Hemostasis and Thrombosis   Chapter 112:  Platelet Morphology, Biochemistry, and Function           1905




                    1261.  Hemler ME: Tetraspanin functions and associated microdomains. Nat Rev Mol Cell     1292.  Starke R, Cramer E, Harrison P: Expression of cell-associated prion protein on normal
                     Biol 6(10):801–811, 2005.                              human platelets. Br J Haematol 110(3):748–750, 2000.
                    1262.  Israels SJ, McMillan-Ward EM: Platelet tetraspanin complexes and their association     1293.  Prevost N, et al: Interactions between Eph kinases and ephrins provide a mechanism
                     with lipid rafts. Thromb Haemost 98(5):1081–1087, 2007.  to support platelet aggregation once cell-to-cell contact has occurred. Proc Natl Acad
                    1263.  Israels SJ, McMillan-Ward EM: Palmitoylation supports the association of tetraspanin   Sci U S A 99(14):9219–9224, 2002.
                     CD63 with CD9 and integrin alphaIIbbeta3 in activated platelets.  Thromb Res     1294.  Prevost N, et al: Signaling by ephrinB1 and Eph kinases in platelets promotes Rap1
                     125(2):152–158, 2010.                                  activation, platelet adhesion, and aggregation via effector pathways that do not require
                    1264.  Goschnick MW, Jackson DE: Tetraspanins-structural and signalling scaffolds that reg-  phosphorylation of ephrinB1. Blood 103(4):1348–1355, 2004.
                     ulate platelet function. Mini Rev Med Chem 7(12):1248–1254, 2007.    1295.  Prevost N, et al: Eph kinases and ephrins support thrombus growth and stability
                    1265.  Goschnick MW, et al: Impaired “outside-in” integrin alphaIIbbeta3 signaling and   by regulating integrin outside-in signaling in platelets.  Proc Natl Acad Sci U S A
                     thrombus stability in TSSC6-deficient mice. Blood 108(6):1911–1918, 2006.  102(28):9820–9825, 2005.
                    1266.  Protty  MB,  et  al:  Identification of Tspan9  as  a  novel  platelet  tetraspanin  and  the     1296.  dem Borne AE, et al: Thrombopoietin and its receptor: Structure, function and role in
                     collagen  receptor  GPVI  as  a  component  of  tetraspanin  microdomains.  Biochem J   the regulation of platelet production. Baillieres Clin Haematol 11(2):409–426, 1998.
                     417(1):391–400, 2009.                                1297.  Fielder PJ, et al: Human platelets as a model for the binding and degradation of throm-
                    1267.  Boucheix C, et al: Molecular cloning of the CD9 antigen. A new family of cell surface   bopoietin. Blood 89(8):2782–2788, 1997.
                     proteins. J Biol Chem 266(1):117–122, 1991.          1298.  Kaushansky K, Thrombopoietin: A tool for understanding thrombopoiesis. J Thromb
                    1268.  Hato T, et al: Exposure of platelet fibrinogen receptors by a monoclonal antibody to   Haemost 1(7):1587–1592, 2003.
                     CD9 antigen. Blood 72(1):224–229, 1988.              1299.  Kaushansky K: Historical review: Megakaryopoiesis and thrombopoiesis.  Blood
                    1269.  Lanza F, et al: CDNA cloning and expression of platelet p24/CD9. Evidence for a new   111(3):981–986, 2008.
                     family of multiple membrane-spanning proteins. J Biol Chem 266(16):10638–10645,     1300.  Chen J, et al: Regulation of platelet activation in vitro by the c-Mpl ligand, thrombo-
                     1991.                                                  poietin. Blood 86(11):4054–4062, 1995.
                    1270.  Brisson C, et al: Co-localization of CD9 and GPIIb-IIIa (alpha IIb beta 3 integrin)     1301.  Ezumi Y, Takayama H, Okuma M: Thrombopoietin, c-Mpl ligand, induces tyrosine
                     on activated platelet pseudopods and alpha-granule membranes. Histochem J, 29(2):   phosphorylation of Tyk2, JAK2, and STAT3, and enhances agonists-induced aggrega-
                     153–165, 1997.                                         tion in platelets in vitro. FEBS Lett 374(1):48–52, 1995.
                    1271.  Hato T, et al: Induction of platelet Ca2+ influx and mobilization by a monoclonal     1302.  Kojima H, et al: Modulation of platelet activation in vitro by thrombopoietin. Thromb
                     antibody to CD9 antigen. Blood 75(5):1087–1091, 1990.  Haemost 74(6):1541–1545, 1995.
                    1272.  Jennings LK, et al: The activation of human platelets mediated by anti-human platelet     1303.  Kubota Y, et al: Thrombopoietin modulates platelet activation  in vitro through
                     p24/CD9 monoclonal antibodies. J Biol Chem 265:3815–3822, 1990.  protein-tyrosine phosphorylation. Stem Cells, 14(4):439–444, 1996.
                    1273.  Worthington RE, Carroll RC, Boucheix C: Platelet activation by CD9 monoclonal     1304.  Oda A, et al: Thrombopoietin primes human platelet aggregation induced by shear
                     antibodies is mediated by the Fc gamma II receptor. Br J Haematol 74(2):216–222,   stress and by multiple agonists. Blood 87(11):4664–4670, 1996.
                     1990.                                                1305.  Rodriguez-Linares B, Watson SP: Thrombopoietin potentiates activation of human
                    1274.  Slupsky JR, et al: Evidence that monoclonal antibodies against CD9 antigen induce   platelets in association with JAK2 and TYK2 phosphorylation.  Biochem J 316
                     specific association between CD9 and the platelet glycoprotein IIb-IIIa complex. J Biol   (Pt 1):93–98, 1996.
                     Chem 264(21):12289–12293, 1989.                      1306.  Fox NE, et al: Compound heterozygous c-Mpl mutations in a child with congenital
                    1275.  Dale GL, Remenyi G, Friese P: Tetraspanin CD9 is required for microparticle release   amegakaryocytic thrombocytopenia: Functional characterization and a review of the
                     from coated-platelets. Platelets 20(6):361–366, 2009.  literature. Exp Hematol 37(4):495–503, 2009.
                    1276.  Mangin PH, et al: CD9 negatively regulates integrin alphaIIbbeta3 activation and     1307.  Kilpivaara O, Levine RL: JAK2 and MPL mutations in myeloproliferative neoplasms:
                     could thus prevent excessive platelet recruitment at sites of vascular injury. J Thromb   Discovery and science. Leukemia 22(10):1813–1817, 2008.
                     Haemost 7(5):900–902, 2009.                          1308.  Aiken ML, et al: Effects of OKM5, a monoclonal antibody to glycoprotein IV, on plate-
                    1277.  Nishibori M, et al: The protein CD63 is in platelet dense granules, is deficient in a   let aggregation and thrombospondin surface expression.  Blood 76(12):2501–2509,
                     patient with Hermansky-Pudlak syndrome, and appears identical to granulophysin. J   1990.
                     Clin Invest 91:1775–1782, 1993.                      1309.  Daviet L, McGregor JL: Vascular biology of CD36: Roles of this new adhesion mole-
                    1278.  Metzelaar MJ, et al: CD63 antigen. A novel lysosomal membrane glycoprotein, cloned   cule family in different disease states. Thromb Haemost 78(1):65–69, 1997.
                     by a screening procedure for intracellular antigens in eukaryotic cells. J Biol Chem     1310.  Febbraio M, Silverstein RL: CD36: Implications in cardiovascular disease. Int J Bio-
                     266(5):3239–3245, 1991.                                chem Cell Biol 39(11):2012–2030, 2007.
                    1279.  Fitter S, et al: Molecular cloning of cDNA encoding a novel platelet-endothelial cell     1311.  Legrand C, Pidard D, Beiso P, et al: Interaction of a monoclonal antibody to glyco-
                     tetra-span antigen, PETA-3. Blood 86(4):1348–1355, 1995.  protein IV (CD36) with human platelets and its effect on platelet function. Platelets
                    1280.  Roberts JJ, et al: Platelet activation induced by a murine monoclonal antibody directed   2(2):99–105, 1991.
                     against a novel tetra-span antigen. Br J Haematol 89(4):853–860, 1995.    1312.  Tandon NN, et al: Isolation and characterization of platelet glycoprotein IV (CD36). J
                    1281.  Sincock PM, Mayrhofer G, Ashman LK: Localization of the transmembrane 4 super-  Biol Chem 1989;264(13):7570–7575, 1991.
                     family (TM4SF) member PETA-3 (CD151) in normal human tissues: Comparison     1313.  Valiyaveettil M, Podrez EA: Platelet hyperreactivity, scavenger receptors and atheroth-
                     with CD9, CD63, and alpha5beta1 integrin. J Histochem Cytochem 45(4):515–525,   rombosis. J Thromb Haemost 7(Suppl 1):218–221, 2009.
                     1997.                                                1314.  Oquendo P, Hundt E, Lawler J, Seed B: CD36 directly mediates cytoadherence of Plas-
                    1282.  Lau LM, et al: The tetraspanin superfamily member, CD151 regulates outside-in inte-  modium falciparum infected erythrocytes. Cell 58(1):95–101, 1989.
                     grin alphaIIbbeta3 signalling and platelet function. Blood 104(8):2368–2375, 2004.    1315.  Huang MM, et al: Membrane glycoprotein IV (CD36) is physically associated with the
                    1283.  Orlowski E, et al: A platelet tetraspanin superfamily member, CD151, is required   Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci U S
                     for regulation of thrombus growth and stability in vivo. J Thromb Haemost 7(12):   A 88(17):7844–7848, 1991.
                     2074–2084, 2009.                                     1316.  Taketani T, et al: Neonatal isoimmune thrombocytopenia caused by type I CD36 defi-
                    1284.  Polgar J, et al: Additional GPI-anchored glycoproteins on human platelets that are   ciency having novel splicing isoforms of the CD36 gene. Eur J Haematol 81(1):70–74,
                     absent or deficient in paroxysmal nocturnal haemoglobinuria.  FEBS Lett 327(1):   2008.
                     49–53, 1993.                                         1317.  Thorne RF, et al: CD36 forms covalently associated dimers and multimers in platelets
                    1285.  Hwang SM, Kim MJ, Chang HE, et al: Human platelet antigen genotyping and expres-  and transfected COS-7 cells. Biochem Biophys Res Commun 240(3):812–818, 1997.
                     sion of CD109 (human platelet antigen 15) mRNA in various human cell types.     1318.  Thibert V, et al: Increased platelet CD36 constitutes a common marker in myeloprolif-
                     Biomed Res Int 2013:946403, 2013.                      erative disorders. Br J Haematol 91(3):618–624, 1995.
                    1286.  Kelton JG, et al: ABH antigens on human platelets: Expression on the glycosyl phos-    1319.  Asch AS, et al: Analysis of CD36 binding domains: Ligand specificity controlled by
                     phatidylinositol-anchored protein CD109. J Lab Clin Med 1998;132(2):142–148, 2013.  dephosphorylation of an ectodomain. Science 262(5138):1436–1440, 1993.
                    1287.  Grunewald M, et al: The platelet function defect of paroxysmal nocturnal haemoglo-    1320.  Aiken JW, Ginsberg MH, Plow EF: Mechanisms for expression of thrombospondin on
                     binuria. Platelets 15(3):145–154, 2004.                the platelet surface. Semin Thromb Hemost 13:307–316, 1987.
                    1288.  Jin  JY,  et  al:  Glycosylphosphatidyl-inositol  (GPI)-linked  protein  deficiency  on  the     1321.  Collot-Teixeira S, et al: CD36 and macrophages in atherosclerosis. Cardiovasc Res
                     platelets of patients with aplastic anaemia and paroxysmal nocturnal haemoglobi-  75(3):468–477, 2007.
                     nuria: Two distinct patterns correlating with expression on neutrophils. Br J Haematol     1322.  Yamashita S, et al: Physiological and pathological roles of a multi-ligand receptor
                     96(3):493–496, 1997.                                   CD36 in atherogenesis; insights from CD36-deficient patients.  Mol Cell Biochem
                    1289.  Barclay GR, et al: Distribution of cell-associated prion protein in normal adult blood   299(1–2):19–22, 2007.
                     determined by flow cytometry. Br J Haematol 107(4):804–814, 1999.    1323.  Chen K, et al: A specific CD36-dependent signaling pathway is required for platelet
                    1290.  Holada  K,  et  al:  Increased  expression  of  phosphatidylinositol-specific  phospholi-  activation by oxidized low-density lipoprotein. Circ Res 102(12):1512–1519, 2008.
                     pase C resistant prion proteins on the surface of activated platelets. Br J Haematol     1324.  Korporaal SJ, et al: Platelet activation by oxidized low density lipoprotein is mediated
                     103(1):276–282, 1998.                                  by CD36 and scavenger receptor-A. Arterioscler Thromb Vasc Biol 27(11):2476–2483,
                    1291.  MacGregor I, et al: Application of a time-resolved fluoroimmunoassay for the analy-  2007.
                     sis of normal prion protein in human blood and its components. Vox SangVox Sang     1325.  Podrez EA, et al: Platelet CD36 links hyperlipidemia, oxidant stress and a prothrom-
                     77(2):88–96, 1999.                                     botic phenotype. Nat Med 13(9):1086–1095, 2007.







          Kaushansky_chapter 112_p1829-1914.indd   1905                                                                 17/09/15   3:30 pm
   1925   1926   1927   1928   1929   1930   1931   1932   1933   1934   1935