Page 1934 - Williams Hematology ( PDFDrive )
P. 1934

1908  Part XII:  Hemostasis and Thrombosis   Chapter 112:  Platelet Morphology, Biochemistry, and Function           1909




                    1521.  Retzer M, Essler M: Lysophosphatidic acid-induced platelet shape change proceeds     1554.  McCloskey DJ, et al: Selective serotonin reuptake inhibitors: Measurement of effect on
                     via Rho/Rho kinase-mediated myosin light-chain and moesin phosphorylation. Cell   platelet function. Transl Res 151(3):168–172, 2008.
                     Signal 12(9–10):645–648, 2000.                       1555.  Lesurtel M, et al: Platelet-derived serotonin mediates liver regeneration.  Science
                    1522.  Haseruck N, et al: The plaque lipid lysophosphatidic acid stimulates platelet activation   312(5770):104–107, 2006.
                     and platelet-monocyte aggregate formation in whole blood: Involvement of P2Y1 and     1556.  Haslam RJ, Rosson GM: Aggregation of human blood platelets by vasopressin. Am J
                     P2Y12 receptors. Blood 103(7):2585–2592, 2004.         Physiol 223(4):958–967, 1972.
                    1523.  Olorundare OE, et al: Assembly of a fibronectin matrix by adherent platelets stimu-    1557.  Pollock WK, MacIntyre DE: Desensitization and antagonism of vasopressin-induced
                     lated by lysophosphatidic acid and other agonists. Blood 98(1):117–124, 2001.  phosphoinositide metabolism and elevation of cytosolic free calcium concentration in
                    1524.  Maschberger P, et al: Mildly oxidized low density lipoprotein rapidly stimulates via   human platelets. Biochem J 234(1):67–73, 1986.
                     activation of the lysophosphatidic acid receptor Src family and Syk tyrosine kinases     1558.  Thomas ME, Osmani AH, Scrutton MC: Some properties of the human platelet vaso-
                     and Ca2+ influx in human platelets. J Biol Chem 275(25):19159–19166, 2000.  pressin receptor. Thromb Res 32(6):557–566, 1983.
                    1525.  Siess W: Athero- and thrombogenic actions of lysophosphatidic acid and sphin-    1559.  Thibonnier M, Roberts JM: Characterization of human platelet vasopressin receptors.
                     gosine-1-phosphate. Biochim Biophys Acta 1582(1–3):204–215, 2002.  J Clin Invest 76(5):1857–1864, 1985.
                    1526.  Motohashi K, et al: Identification of lysophospholipid receptors in human platelets:     1560.  Siess W, et al: Activation of V1-receptors by vasopressin stimulates inositol phos-
                     The relation of two agonists, lysophosphatidic acid and sphingosine 1-phosphate.   pholipid hydrolysis and  arachidonate metabolism  in human platelets.  Biochem J
                     FEBS Lett 468(2–3):189–193, 2000.                      233(1):83–91, 1986.
                    1527.  Siess W, Tigyi G: Thrombogenic and atherogenic activities of lysophosphatidic acid. J     1561.  Thibonnier M, Goraya T, Berti-Mattera L: G protein coupling of human platelet V1
                     Cell Biochem 92(6):1086–1094, 2004.                    vascular vasopressin receptors. Am J Physiol 264(5 Pt 1):C1336–C1344, 1993.
                    1528.  Yatomi Y, et al: Sphingosine-1-phosphate: A platelet-activating sphingolipid released     1562.  Berrettini WH, et al: Human platelet vasopressin receptors.  Life Sci 1982;30(5):
                     from agonist-stimulated human platelets. Blood 86(1):193–202, 1995.  425–432, 1993.
                    1529.  Nugent D, Xu Y: Sphingosine-1-phosphate: Characterization of its inhibition of plate-    1563.  Siess W: Molecular mechanisms of platelet activation. Physiol Rev 69(1):58–178, 1989.
                     let aggregation. Platelets 11(4):226–232, 2000.      1564.  Wun T, Paglieroni T, Lachant NA: Physiologic concentrations of arginine vasopressin
                    1530.  Hoyer D, et al: International Union of Pharmacology classification of receptors for   activate human platelets in vitro. Br J Haematol 92(4):968–972, 1996.
                     5-hydroxytryptamine (Serotonin). Pharmacol Rev 46(2):157–203, 1994.    1565.  Gunnet JW, et al: Pharmacological characterization of RWJ-676070, a dual vaso-
                    1531.  Allen JA, Yadav PN, Roth BL: Insights into the regulation of 5-HT2A serotonin recep-  pressin V(1A)/V(2) receptor antagonist. Eur J Pharmacol 590(1–3):333–342, 2008.
                     tors by scaffolding proteins and kinases. Neuropharmacology 55(6):961–968, 2008.    1566.  Serradeil-Le Gal C, et al: Nonpeptide vasopressin receptor antagonists: Develop-
                    1532.  Cook EH Jr, et al: Primary structure of the human platelet serotonin 5-HT2A receptor:   ment of selective and orally active V1a, V2 and V1b receptor ligands. Prog Brain Res
                     Identify with frontal cortex serotonin 5-HT2A receptor. J Neurochem 63(2):465–469, 1994.  139:197–210, 2002.
                    1533.  De Clerck F, et al: Evidence for functional 5-HT2 receptor sites on human blood plate-    1567.  Crabos M, Bertschin S, Bühler FR, et al: Identification of AT1 receptors on human
                     lets. Biochem PharmacolAm Rev Respir Dis 33(17):2807–2811, 1984.  platelets and decreased angiotensin II binding in hypertension. J Hypertens Suppl 11
                    1534.  Roth BL, et al: 5-Hydroxytryptamine2-family receptors (5-hydroxytryptamine2A,   Suppl 5:S230–S231, 1993.
                     5- hydroxytryptamine2B, 5-hydroxytryptamine2C): Where structure meets function.     1568.  Jagroop IA, Mikhailidis DP: Angiotensin II can induce and potentiate shape change in
                     Pharmacol Ther 79(3):231–257, 1998.                    human platelets: Effect of losartan. J Hum Hypertens 2000;14(9):581–585, 1993.
                    1535.  Leysen JE, et al: Identification of nonserotonergic [3H]ketanserin binding sites associ-    1569.  Lopez-Farre A, et al: Angiotensin II AT(1) receptor antagonists and platelet activa-
                     ated with nerve terminals in rat brain and with platelets; relation with release of biogenic   tion. Nephrol Dial Transplant 16 Suppl 1:45–49, 2001.
                     amine metabolites induced by ketans. J Pharmacol Exp Ther 244(1):310–321, 1988.    1570.  Larsson PT, Schwieler JH, Wallen NH: Platelet activation during angiotensin II infu-
                    1536.  Ozaki N, et al: A naturally occurring amino acid substitution of the human serotonin   sion in healthy volunteers. Blood Coagul Fibrinolysis 11(1):61–69, 2000.
                     5- HT2A receptor influences amplitude and timing of intracellular calcium mobiliza-    1571.  Li P, et al: Novel angiotensin II AT(1) receptor antagonist irbesartan prevents throm-
                     tion. J Neurochem 68(5):2186–2193, 1997.               boxane A(2)-induced vasoconstriction in canine coronary arteries and human plate-
                    1537.  Shimizu  M, et  al: Serotonin-2A receptor gene  polymorphisms are associated  with   let aggregation. J Pharmacol Exp Ther 292(1):238–246, 2000.
                     serotonin-induced platelet aggregation. Thromb Res 112(3):137–142, 2003.    1572.  Monton M, et al: Comparative effects of angiotensin II AT-1-type receptor antagonists
                    1538.  Arora RC, Meltzer HY: Serotonin2 receptor binding in blood platelets of schizo-  in vitro on human platelet activation. J Cardiovasc Pharmacol 35(6):906–913, 2000.
                     phrenic patients. Psychiatry Res 47(2):111–119, 1993.    1573.  Kalinowski L, et al: Angiotensin II AT1 receptor antagonists inhibit platelet adhesion
                    1539.  Coccaro EF, et al: Impulsive aggression in personality disorder correlates with platelet   and aggregation by nitric oxide release. Hypertension 40(4):521–527, 2002.
                     5- HT2A receptor binding. Neuropsychopharmacology 16(3):211–216, 1997.    1574.  Jimenez AM, et al: Inhibition of platelet activation in stroke-prone spontaneously
                    1540.  Pandey GN: Altered serotonin function in suicide. Evidence from platelet and neu-  hypertensive rats: Comparison of losartan, candesartan, and valsartan. J Cardiovasc
                     roendocrine studies. Ann N Y Acad Sci 836:182–200, 1997.  Pharmacol 37(4):406–412, 2001.
                    1541.  Tomiyoshi R, et al: Serotonin-induced platelet intracellular Ca2+ responses in     1575.  Owens P, et al: Comparison of antihypertensive and metabolic effects of losartan and
                     untreated depressed patients and imipramine responders in remission. Biol Psychiatry   losartan in combination with hydrochlorothiazide—A randomized controlled trial. J
                     45(8):1042–1048, 1999.                                 Hypertens 18(3):339–345, 2000.
                    1542.  Wolfe BE, Metzger E, Jimerson DC: Research update on serotonin function in bulimia     1576.  Schieffer B, et al: Comparative effects of AT1-antagonism and angiotensin-converting
                     nervosa and anorexia nervosa. Psychopharmacol Bull 33(3):345–354, 1997.  enzyme inhibition on markers of inflammation and platelet aggregation in patients
                    1543.  Cho R, et al: Relationship between central and peripheral serotonin 5-HT2A recep-  with coronary artery disease. J Am Coll Cardiol 44(2):362–368, 2004.
                     tors: A positron emission tomography study in healthy individuals.  Neurosci Lett     1577.  Serebruany VL, et al: Valsartan inhibits platelet activity at different doses in mild
                     261(3):139–142, 1999.                                  to moderate hypertensives: Valsartan Inhibits Platelets (VIP) trial.  Am Heart J
                    1544.  Schins A, et al: Increased coronary events in depressed cardiovascular patients:   151(1):92–99, 2006.
                     5-HT2A receptor as missing link? Psychosom Med 65(5):729–737, 2003.    1578.  Yamada K, Hirayama T, Hasegawa Y: Antiplatelet effect of losartan and telmisartan in
                    1545.  de Chaffoy de Courcelles D, Leysen JE, De Clerck F, et al: Evidence that phospholipid   patients with ischemic stroke. J Stroke Cerebrovasc Dis 16(5):225–231, 2007.
                     turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J Biol     1579.  Dorahy DJ, et al: Stimulation of platelet activation and aggregation by a carboxyl-
                     Chem 260(12):7603–7608, 1985.                          terminal peptide from thrombospondin binding to the integrin-associated protein
                    1546.  Erne P, Pletscher A: Rapid intracellular release of calcium in human platelets by stim-  receptor. J Biol Chem 272(2):1323–1330, 1997.
                     ulation of 5-HT2-receptors. Br J Pharmacol 84(2):545–549, 1985.    1580.  Lindberg FP, et al: Molecular cloning of integrin-associated protein: An immunoglob-
                    1547.  Li N, et al: Effects of serotonin on platelet activation in whole blood. Blood Coagul   ulin family member with multiple membrane-spanning domains implicated in alpha
                     Fibrinolysis 8(8):517–523, 1997.                       v beta 3-dependent ligand binding. J Cell Biol 123(2):485–496, 1993.
                    1548.  Houston DS, Shepherd JT, Vanhoutte PM: Aggregating human platelets cause direct     1581.  Wang XQ, Frazier WA: The thrombospondin receptor CD47 (IAP) modulates and
                     contraction and endothelium- dependent relaxation of isolated canine coronary   associates with alpha2 beta1 integrin in vascular smooth muscle cells. Mol Biol Cell
                     arteries. Role of serotonin, thromboxane A2, and adenine nucleotides. J Clin Invest   9(4):865–874, 1998.
                     78(2):539–544, 1986.                                 1582.  Frazier WA, et al: The thrombospondin receptor integrin-associated protein (CD47)
                    1549.  Golino P, et al: Mediation or reocclusion by thromboxane A2 and serotonin after   functionally couples to heterotrimeric Gi. J Biol Chem 274(13):8554–8560, 1999.
                     thrombolysis with tissue-type plasminogen activator in a canine preparation of coro-    1583.  Chung J, Gao AG, Frazier WA: Thrombospondin acts via integrin-associated protein
                     nary thrombosis. Circulation 77:678–684, 1988.         to activate the platelet integrin alphaIIbbeta3.  J Biol Chem 272(23):14740–14746,
                    1550.  Alberio LJ, Clemetson KJ: All platelets are not equal: COAT platelets. Curr Hematol   1997.
                     Rep 3(5):338–343, 2004.                              1584.  Isenberg JS, et al: Thrombospondin-1 stimulates platelet aggregation by blocking
                    1551.  Dale GL, et al: Stimulated platelets use serotonin to enhance their retention of proco-  the antithrombotic activity of nitric oxide/cGMP signaling. Blood 111(2):613–623,
                     agulant proteins on the cell surface. Nature 415(6868):175–179, 2002.  2008.
                    1552.  Walther DJ, et al: Serotonylation of small GTPases is a signal transduction pathway     1585.  Lagadec P, et al: Involvement of a CD47-dependent pathway in platelet adhesion on
                     that triggers platelet alpha-granule release. Cell 115(7):851–862, 2003.  inflamed vascular endothelium under flow. Blood 101(12):4836–4843, 2003.
                    1553.  Carneiro AM, et al: Interactions between integrin alphaIIbbeta3 and the serotonin     1586.  Pimanda JE, et al: The von Willebrand factor-reducing activity of thrombospondin-1
                     transporter regulate serotonin transport and platelet aggregation in mice and humans.   is located in the calcium-binding/C-terminal sequence and requires a free thiol at
                     J Clin Invest 118(4):1544–1552, 2008.                  position 974. Blood 100(8):2832–2838, 2002.







          Kaushansky_chapter 112_p1829-1914.indd   1909                                                                 17/09/15   3:30 pm
   1929   1930   1931   1932   1933   1934   1935   1936   1937   1938   1939