Page 1931 - Williams Hematology ( PDFDrive )
P. 1931

1906           Part XII:  Hemostasis and Thrombosis                                                                                                      Chapter 112:  Platelet Morphology, Biochemistry, and Function           1907




                 1326.  Ma Y, Ashraf MZ, Podrez EA: Scavenger receptor BI modulates platelet reactivity and     1359.  Ghebrehiwet B, et al: GC1q-R/p33, a member of a new class of multifunctional and
                   thrombosis in dyslipidemia. Blood 116(11):1932–1941, 2010.  multicompartmental cellular proteins, is involved in inflammation and infection.
                 1327.  Ghosh A, et al: Platelet CD36 mediates interactions with endothelial cell-derived   Immunol Rev 180:65–77, 2001.
                   microparticles and contributes to thrombosis in mice. J Clin Invest 118(5):1934–1943,     1360.  Peerschke EI, Ghebrehiwet B: Platelet receptors for the complement component C1q:
                   2008.                                                  Implications for hemostasis and thrombosis. Immunobiology 199(2):239–249, 1998.
                 1328.  Hajjar DP, Gotto AM: Targeting CD36: Modulating inflammation and atherogenesis.     1361.  Peerschke EIB, Ghebrehiwet B: Human blood platelets possess specific binding sites
                   Curr Atheroscler Rep 5(3):155–156, 2003.               for C1q. J Immunol 138:1537–1541, 1987.
                 1329.  Hirano K, et al: Pathophysiology of human genetic CD36 deficiency. Trends Cardio-    1362.  Ghebrehiwet B, et al: Isolation, cDNA cloning, and overexpression of a 33-kD cell
                   vasc Med 13(4):136–141, 2003.                          surface glycoprotein that binds to the globular “heads” of C1q. J Exp Med 179(6):
                 1330.  Pravenec M, Kurtz TW: Genetics of Cd36 and the hypertension metabolic syndrome.   1809–1821, 1994.
                   Semin Nephrol 22(2):148–153, 2002.                   1363.  Herwald H, et al: Isolation and characterization of the kininogen-binding protein
                 1331.  Su X, Abumrad NA: Cellular fatty acid uptake: A pathway under construction. Trends   p33  from  endothelial  cells.  Identity  with  the  gC1q  receptor.  J Biol Chem  271(22):
                   Endocrinol Metab 20(2):72–77, 2009.                    13040–13047, 1996.
                 1332.  Asch AS, et al: Isolation of the thrombospondin membrane receptor. J Clin Invest     1364.  Nepomuceno RR, Tenner AJ: C1qRP, the C1q receptor that enhances phagocytosis, is
                   79:1054–1061, 1987.                                    detected specifically in human cells of myeloid lineage, endothelial cells, and platelets.
                 1333.  Diaz-Ricart M, et al: Antibodies to CD36 (GPIV) inhibit platelet adhesion to sub-  J Immunol 160(4):1929–1935, 1998.
                   endothelial surfaces under flow conditions. Arterioscler Thromb Vasc Biol 16(7):883–    1365.  Peerschke EI, Reid KB, Ghebrehiwet B: Platelet activation by C1q results in the induc-
                   888, 1996.                                             tion of alpha IIb/beta 3 integrins (GPIIb-IIIa) and the expression of P-selectin and
                 1334.  Tandon NN, Kralisz U, Jamieson GA: Identification of glycoprotein IV (CD36) as a   procoagulant activity. J Exp Med 178(2):579–587, 1993.
                   primary receptor for platelet-collagen adhesion. J Biol Chem 264:7576–7583, 1989.    1366.  Skoglund C, et al: C1q induces a rapid up-regulation of P-selectin and modulates col-
                 1335.  Saelman EU, et al: Platelet adhesion to collagen and endothelial cell matrix under   lagen- and collagen-related peptide-triggered activation in human platelets. Immuno-
                   flow conditions is not dependent on platelet glycoprotein IV. Blood 83(11):3240–3244,   biology 215(12):987–995, 2010.
                   1994.                                                1367.  Peerschke EIB: Platelet membrane receptors for the complement component C1q.
                 1336.  Wun T, et al: Platelet-erythrocyte adhesion in sickle cell disease.  J Investig Med   Semin Hematol 31:320–328, 1994.
                   47(3):121–127, 1999.                                 1368.  Peerschke EIB, et al: Platelet activation by C1q results in the induction of αIIbβ3 integ-
                 1337.  Valiyaveettil M, et al: Oxidized high-density lipoprotein inhibits platelet activation   rins (GPIIb-IIIa) and the expression of P-selectin and procoagulant activity. J Exp Med
                   and aggregation via scavenger receptor BI. Blood 111(4):1962–1971, 2008.  178:579–587, 1993.
                 1338.  Chadwick AC, Sahoo D: Functional genomics of the human high-density lipoprotein     1369.  Jiang J, et al: Crystal structure of human p32, a doughnut-shaped acidic mitochondrial
                   receptor scavenger receptor BI: An old dog with new tricks. Curr Opin Endocrinol   matrix protein. Proc Natl Acad Sci U S A 96(7):3572–3577, 1999.
                   Diabetes Obes 20(2):124–131, 2013.                   1370.  Metzelaar MJ, et al: Identification of a 33-Kd protein associated with the alpha-
                 1339.  Choi WS, Jeon OH, Kim DS: CD40 ligand shedding is regulated by interaction   granule membrane (GMP-33) that is expressed on the surface of activated platelets.
                   between matrix metalloproteinase-2 and platelet integrin alpha(IIb)beta(3). J Thromb   Blood 79(2):372–379, 1992.
                   Haemost 8(6):1364–1371, 2010.                        1371.  Damas C, et al: The 33-kDa platelet alpha-granule membrane protein (GMP-33) is
                 1340.  Heeschen C, et al: Soluble CD40 ligand in acute coronary syndromes. N Engl J Med   an N-terminal proteolytic fragment of  thrombospondin.  Thromb Haemost 86(3):
                   348(12):1104–1111, 2003.                               887–893, 2001.
                 1341.  Andre P, et al: Platelet-derived CD40L: The switch-hitting player of cardiovascular     1372.  Rosenstein Y, et al: CD43, a molecule defective in Wiskott-Aldrich syndrome, binds
                   disease. Circulation 106(8):896–899, 2002.             ICAM-1. Nature 354(6350):233–235, 1991.
                 1342.  Aukrust P, Damas JK, Solum NO: Soluble CD40 ligand and platelets: Self-perpetu-    1373.  Koupenova M, Mick E, Mikhalev E, et al: Sex differences in platelet toll-like receptors
                   ating pathogenic loop in thrombosis and inflammation? J Am Coll Cardiol 43(12):   and their association with cardiovascular risk factors. Arterioscler Thromb Vasc Biol
                   2326–2328, 2004.                                       35(4):1030–1037, 2015.
                 1343.  Jin R, Yu S, Song Z, et al: Soluble CD40 ligand stimulates CD40-dependent activation     1374.  Panigrahi S, et al: Engagement of platelet toll-like receptor 9 by novel endogenous lig-
                   of the β2 integrin Mac-1 and protein kinase C zeda (PKCζ) in neutrophils: Implica-  ands promotes platelet hyperreactivity and thrombosis. Circ Res 112(1):103–112, 2013.
                   tions for neutrophil-platelet interactions and neutrophil oxidative burst. PLoS One     1375.  Rivadeneyra L, et al: Regulation of platelet responses triggered by Toll-like receptor
                   8(6):e64631, 2013.                                     2 and 4 ligands is another non-genomic role of nuclear factor-kappaB. Thromb Res
                 1344.  Varo N, de Lemos JA, Libby P, et al: Soluble CD40L: Risk prediction after acute coro-  133(2):235–243, 2014.
                   nary syndromes. Circulation 108(9):1049–1052, 2003.    1376.  Semple JW, et al: Platelet-bound lipopolysaccharide enhances Fc receptor-mediated
                 1345.  Cipollone F, et al: Preprocedural level of soluble CD40L is predictive of enhanced   phagocytosis of IgG-opsonized platelets. Blood 109(11):4803–4805, 2007.
                   inflammatory response and restenosis after coronary angioplasty.  Circulation     1377.  Zhang G, et al: Lipopolysaccharide stimulates platelet secretion and potentiates plate-
                   108(22):2776–2782, 2003.                               let aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J
                 1346.  Lievens D, et al: Platelet CD40L mediates thrombotic and inflammatory processes in   Immunol 182(12):7997–8004, 2009.
                   atherosclerosis. Blood 116(20):4317–4327, 2010.      1378.  Stahl AL, et al: Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to
                 1347.  Pamukcu B, et al: The CD40-CD40L system in cardiovascular disease.  Ann  Med   platelets through TLR4 and CD62 and is detected on circulating platelets in patients
                   43(5):331–340, 2011.                                   with hemolytic uremic syndrome. Blood 108(1):167–176, 2006.
                 1348.  Andre P, et al: CD40L stabilizes arterial thrombi by a beta3 integrin-dependent mech-    1379.  Cognasse F, et al: Toll-like receptor 4 ligand can differentially modulate the release of
                   anism. Nat Med 8(3):247–252, 2002.                     cytokines by human platelets. Br J Haematol 141(1):84–91, 2008.
                 1349.  Inwald DP, et al: CD40 is constitutively expressed on platelets and provides a novel     1380.  Scott T, Owens MD: Thrombocytes respond to lipopolysaccharide through Toll-like
                   mechanism for platelet activation. Circ Res 92(9):1041–1048, 2003.  receptor-4, and MAP kinase and NF-kappaB pathways leading to expression of inter-
                 1350.  Prasad KS, et al: Soluble CD40 ligand induces beta3 integrin tyrosine phosphoryla-  leukin-6 and cyclooxygenase-2 with production of prostaglandin E2. Mol Immunol
                   tion and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci U S A   45(4):1001–1008, 2008.
                   100(21):12367–12371, 2003.                           1381.  Stark RJ, Aghakasiri N, Rumbaut RE: Platelet-derived Toll-like receptor 4
                 1351.  Urbich C, et al: CD40 ligand inhibits endothelial cell migration by increasing produc-  (Tlr-4) is sufficient to promote microvascular thrombosis in endotoxemia. PLoS One
                   tion of endothelial reactive oxygen species. Circulation 106(8):981–986, 2002.  7(7):e41254, 2012.
                 1352.  Czapiga M, Kirk AD, Lekstrom-Himes J: Platelets deliver costimulatory signals to     1382.  Ren MP, et al: Endothelial cells but not platelets are the major source of Toll-like
                   antigen-presenting cells: A potential bridge between injury and immune activation.   receptor 4 in the arterial thrombosis and tissue factor expression in mice. Am J Physiol
                   Exp Hematol 32(2):135–139, 2004.                       Regul Integr Comp Physiol 307(7):R901–R907, 2014.
                 1353.  Elzey BD, et al: Platelet-mediated modulation of adaptive immunity. A communica-    1383.  Gould TJ, Vu TT, Swystun LL, et al: Neutrophil extracellular traps promote thrombin
                   tion link between innate and adaptive immune compartments. Immunity 19(1):9–19,   generation through platelet-dependent and platelet-independent mechanisms. Arte-
                   2003.                                                  rioscler Thromb Vasc Biol 34(9):1977–1984, 2014.
                 1354.  Ahmad R, et al: Activated human platelets express Fas-L and induce apoptosis in     1384.  Akbiyik F, et al: Human bone marrow megakaryocytes and platelets express
                   Fas-positive tumor cells. J Leukoc Biol 69(1):123–128, 2001.  PPARgamma, and PPARgamma agonists blunt platelet release of CD40 ligand and
                 1355.  Crist SA, et al: Expression of TNF-related apoptosis-inducing ligand (TRAIL) in   thromboxanes. Blood 104(5):1361–1368, 2004.
                   megakaryocytes and platelets. Exp Hematol 32(11):1073–1081, 2004.    1385.  Ray DM, et al: Peroxisome proliferator-activated receptor gamma and retinoid X
                 1356.  Otterdal K, et al: Platelet-derived LIGHT induces inflammatory responses in endo-  receptor transcription factors are released from activated human platelets and shed in
                   thelial cells and monocytes. Blood 108(3):928–935, 2006.  microparticles. Thromb Haemost 99(1):86–95, 2008.
                 1357.  Saftig P, Schroder B, Blanz J: Lysosomal membrane proteins: Life between acid and     1386.  Ali FY, et al: Role of nuclear receptor signaling in platelets: Antithrombotic effects of
                   neutral conditions. Biochem Soc Trans 38(6):1420–1423, 2010.  PPARbeta. FASEB J 20(2):326–328, 2006.
                 1358.  Silverstein  RL,  Febbraio  M:  Identification  of  lysosome-associated  membrane     1387.  Borchert M, et al: Review of the pleiotropic effects of peroxisome proliferator-
                   protein-2 as an activation-dependent platelet surface glycoprotein.  Blood 80(6):   activated receptor gamma agonists on platelet function. Diabetes Technol Ther 9(5):
                   1470–1475, 1992.                                       410–420, 2007.








          Kaushansky_chapter 112_p1829-1914.indd   1906                                                                 17/09/15   3:30 pm
   1926   1927   1928   1929   1930   1931   1932   1933   1934   1935   1936