Page 812 - Williams Hematology ( PDFDrive )
P. 812

786  Part VI:  The Erythrocyte  Chapter 49:  Disorders of Hemoglobin Structure: Sickle Cell Anemia and Related Abnormalities  787




                    312. Kyaw MH, Lynfield R, Schaffner W, et al: Effect of introduction of the pneumococ-    343. Wyszynski DF, Baldwin CT, Cleves MA, et al: Genetic polymorphisms associated with
                     cal conjugate vaccine on drug-resistant  Streptococcus pneumoniae.  N Engl J Med   fetal hemoglobin response to hydroxyurea in patients with sickle cell anemia. Blood
                     354(14):1455–1463, 2006.                              Coagul Fibrinolysis 104 (Suppl):34a, 2004.
                    313. Section on Hematology/Oncology Committee on Genetics; American Academy     344. Pembrey ME, Wood WG, Weatherall DJ, et al: Fetal haemoglobin production and the
                     of  Pediatrics:  Health  supervision  for  children  with sickle  cell  disease.  Pediatrics   sickle gene in the oases of Eastern Saudi Arabia. Br J Haematol 40(3):415–429, 1978.
                     109(3):526–535, 2002.                                345. Platt OS: Hydroxyurea for the treatment of sickle cell  anemia.  N Engl J Med
                    314. Adamkiewicz TV, Silk BJ, Howgate J, et al: Effectiveness of the 7-valent pneumococcal   358(13):1362–1369, 2008.
                     conjugate vaccine in children with sickle cell disease in the first decade of life. Pediatrics     346. Gladwin MT, Shelhamer JH, Ognibene FP, et al: Nitric oxide donor properties of
                     121(3):562–569, 2008.                                 hydroxyurea in patients with sickle cell disease. Br J Haematol 116(2):436–444, 2002.
                    315. McCavit TL, Quinn CT, Techasaensiri C, et al: Increase in invasive Streptococcus pneu-    347. Hillery CA, Du MC, Wang WC, et al: Hydroxyurea therapy decreases the in vitro adhe-
                     moniae infections in children with sickle cell disease since pneumococcal conjugate   sion of sickle erythrocytes to thrombospondin and laminin. Br J Haematol 109(2):322–
                     vaccine licensure. J Pediatr 158(3):505–507, 2011.    327, 2000.
                    316. Falletta JM, Woods GM, Verter JI, et al: Discontinuing penicillin prophylaxis in children     348. Orringer EP, Blythe DS, Johnson AE, et al: Effects of hydroxyurea on hemoglobin F
                     with sickle cell anemia. Prophylactic Penicillin Study II. J Pediatr 127(5):685–690, 1995.  and water content in the red blood cells of dogs and of patients with sickle cell anemia.
                    317. Rice TW, Rubinson L, Uyeki TM, et al: Critical illness from 2009 pandemic influenza A   Blood 78(1):212–216, 1991.
                     virus and bacterial coinfection in the United States. Crit Care Med 40(5):1487–1498, 2012.    349. Steinberg MH, Barton F, Castro O, et al: Effect of hydroxyurea on mortality and mor-
                    318. Makani J, Komba AN, Cox SE, et al: Malaria in patients with sickle cell anemia: Bur-  bidity in adult sickle cell anemia: Risks and benefits up to 9 years of treatment. JAMA
                     den, risk factors, and outcome at the outpatient clinic and during hospitalization. Blood   289(13):1645–1651, 2003.
                     115(2):215–220, 2010.                                350. Ware RE: How I use hydroxyurea to treat young patients with sickle cell anemia. Blood
                    319. McAuley CF, Webb C, Makani J, et al: High mortality from Plasmodium falciparum   115(26):5300–5311, 2010.
                     malaria in children living with sickle cell anemia on the coast of Kenya.  Blood     351. Ware RE: Hydroxycarbamide: Clinical aspects. C R Biol 336(3):177–182, 2013.
                     116(10):1663–1668, 2010.                             352. Brawley OW, Cornelius LJ, Edwards LR, et al: National Institutes of Health Consensus
                    320. Koshy M, Weiner SJ, Miller ST, et al: Surgery and anesthesia in sickle cell disease. Coop-  Development Conference statement: Hydroxyurea treatment for sickle cell disease. Ann
                     erative Study of Sickle Cell Diseases. Blood 86(10):3676–3684, 1995.  Intern Med 148(12):932–938, 2008.
                    321. Firth PG, Head CA: Sickle cell disease and anesthesia. Anesthesiology 101(3):766–785,     353. Lanzkron S, Strouse JJ, Wilson R, et al: Systematic review: Hydroxyurea for the treat-
                     2004.                                                 ment of adults with sickle cell disease. Ann Intern Med 148(12):939–955, 2008.
                    322. Griffin TC, Buchanan GR: Elective surgery in children with sickle cell disease without     354. Shelby MD: National Toxicology Program Center for the Evaluation of Risks to Human
                     preoperative blood transfusion. J Pediatr Surg 28(5):681–685, 1993.  Reproduction: Guidelines for CERHR expert panel members. Birth Defects Res B Dev
                    323. Howard J, Malfroy M, Llewelyn C, et al: The Transfusion Alternatives Preoperatively in   Reprod Toxicol 74(1):9–16, 2005.
                     Sickle Cell Disease (TAPS) study: A randomised, controlled, multicentre clinical trial.     355. Shelby MD: Center for the Evaluation of Risks to Human Reproduction 2007; Available
                     Lancet 381(9870):930–938, 2013.                       from: http://cerhr.niehs.nih.gov/chemicals/hydroxyurea/Hydroxyurea_final.pdf.
                    324. Kutlar A: Sickle cell disease: A multigenic perspective of a single gene disorder. Hemo-    356. Hankins JS, Ware RE, Rogers ZR, et al: Long-term hydroxyurea therapy for infants with
                     globin 31(2):209–224, 2007.                           sickle cell anemia: The HUSOFT extension study. Blood 106(7):2269–2275, 2005.
                    325. Steinberg MH: Predicting clinical severity in sickle cell anaemia.  Br J Haematol     357. Kinney TR, Helms RW, O’Branski EE, et al: Safety of hydroxyurea in children with sickle
                     129(4):465–481, 2005.                                 cell anemia: Results of the HUG-KIDS study, a phase I/II trial. Pediatric Hydroxyurea
                    326. Sankaran VG: Targeted therapeutic strategies for fetal hemoglobin induction. Hematol-  Group. Blood 94(5):1550–1554, 1999.
                     ogy Am Soc Hematol Educ Program 2011:459–465, 2011.    358. Atweh GF, Sutton M, Nassif I, et al: Sustained induction of fetal hemoglobin by pulse
                    327. Zhou D, Liu K, Sun CW, et al: KLF1 regulates BCL11A expression and gamma- to beta-  butyrate therapy in sickle cell disease. Blood 93(6):1790–1797, 1999.
                     globin gene switching. Nat Genet 42(9):742–744, 2010.    359. Dover GJ, Brusilow S, Charache S: Induction of fetal hemoglobin production in sub-
                    328. Hoppe C, Klitz W, Cheng S, et al: Gene interactions and stroke risk in children with   jects with sickle cell anemia by oral sodium phenylbutyrate. Blood 84(1):339–343, 1994.
                     sickle cell anemia. Blood 103(6):2391–2396, 2004.    360. Reid ME, El Beshlawy A, Inati A, et al: A double-blind, placebo-controlled phase II
                    329. Sebastiani P, Ramoni MF, Nolan V, et al: Genetic dissection and prognostic modeling of   study of the efficacy and safety of 2,2-dimethylbutyrate (HQK-1001), an oral fetal glo-
                     overt stroke in sickle cell anemia. Nat Genet 37(4):435–440, 2005.  bin inducer, in sickle cell disease. Am J Hematol 89(7):709–713, 2014.
                    330. Taylor JG 6th, Tang DC, Savage SA, et al: Variants in the VCAM1 gene and risk for     361. DeSimone J, Heller P, Schimenti JC, et al: Fetal hemoglobin production in adult
                     symptomatic stroke in sickle cell disease. Blood 100(13):4303–4309, 2002.  baboons by 5-azacytidine or by phenylhydrazine-induced hemolysis is associated with
                    331. Sharan K, Surrey S, Ballas S, et al: Association of T-786C eNOS gene polymorphism   hypomethylation of globin gene DNA. Prog Clin Biol Res 134:489–500, 1983.
                     with increased susceptibility to acute chest syndrome in females with sickle cell disease.     362. Saunthararajah Y, Hillery CA, Lavelle D, et al: Effects of 5-aza-2′-deoxycytidine on fetal
                     Br J Haematol 124(2):240–243, 2004.                   hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with
                    332. Adekile A, Kutlar F, McKie K, et al: The influence of uridine diphosphate glucuronosyl   sickle cell disease. Blood 102(12):3865–3870, 2003.
                     transferase 1A promoter polymorphisms, beta-globin gene haplotype, co-inherited     363. Saunthararajah Y, Molokie R, Saraf S, et al: Clinical effectiveness of decitabine in severe
                     alpha-thalassemia trait and Hb F on steady-state serum bilirubin levels in sickle cell   sickle cell disease. Br J Haematol 141(1):126–129, 2008.
                     anemia. Eur J Haematol 75(2):150–155, 2005.          364. Charache S, Dover G, Smith K, et al: Treatment of sickle cell anemia with 5-azacytidine
                    333. Fertrin KY, Melo MB, Assis AM, et al: UDP-glucuronosyltransferase 1 gene promoter   results in increased fetal hemoglobin production and is associated with nonrandom
                     polymorphism is associated with increased serum bilirubin levels and cholecystectomy   hypomethylation of DNA around the gamma-delta-beta-globin gene complex.  Proc
                     in patients with sickle cell anemia. Clin Genet 64(2):160–162, 2003.  Natl Acad Sci U S A 80(15):4842–4846, 1983.
                    334. Haverfield EV, McKenzie CA, Forrester T, et al: UGT1A1 variation and gallstone forma-    365. DeSimone J, Heller P, Hall L, et al: 5-Azacytidine stimulates fetal hemoglobin synthesis
                     tion in sickle cell disease. Blood 105(3):968–972, 2005.  in anemic baboons. Proc Natl Acad Sci U S A 79(14):4428–4431, 1982.
                    335. Passon RG, Howard TA, Zimmerman SA, et al: Influence of bilirubin uridine diphos-    366. Ley TJ, DeSimone J, Noguchi CT, et al: 5-Azacytidine increases gamma-globin synthe-
                     phate-glucuronosyltransferase 1A promoter polymorphisms on serum bilirubin   sis and reduces the proportion of dense cells in patients with sickle cell anemia. Blood
                     levels and cholelithiasis in children with sickle cell anemia. J Pediatr Hematol Oncol   62(2):370–380, 1983.
                     23(7):448–451, 2001.                                 367. Lowrey CH, Nienhuis AW: Brief report: Treatment with azacitidine of patients with
                    336. Nolan VG, Baldwin C, Ma Q, et al: Association of single nucleotide polymorphisms in   end-stage beta-thalassemia. N Engl J Med 329(12):845–848, 1993.
                     Klotho with priapism in sickle cell anaemia. Br J Haematol 128(2):266–272, 2005.    368. Mavilio F, Giampaolo A, Care A, et al: Molecular mechanisms of human hemoglobin
                    337. Close J, Game L, Clark B, et al: Genome annotation of a 1.5 Mb region of human chro-  switching: Selective undermethylation and expression of globin genes in embryonic,
                     mosome 6q23 encompassing a quantitative trait locus for fetal hemoglobin expression   fetal, and adult erythroblasts. Proc Natl Acad Sci U S A 80(22):6907–6911, 1983.
                     in adults. BMC Genomics 5(1):33, 2004.               369. Moutouh-de Parseval LA, Verhelle D, Glezer E, et al: Pomalidomide and lenalidomide
                    338. Garner CP, Tatu T, Best S, et al: Evidence of genetic interaction between the beta-globin   regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells. J Clin
                     complex and chromosome 8q in the expression of fetal hemoglobin. Am J Hum Genet   Invest 118(1):248–258, 2008.
                     70(3):793–799, 2002.                                 370. Meiler SE, Wade M, Kutlar F, et al: Pomalidomide augments fetal hemoglobin produc-
                    339. Lettre G, Sankaran VG, Bezerra MA, et al: DNA polymorphisms at the BCL11A,   tion without the myelosuppressive effects of hydroxyurea in transgenic sickle cell mice.
                     HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain cri-  Blood 118(4):1109–1112, 2011.
                     ses in sickle cell disease. Proc Natl Acad Sci U S A 105(33):11869–11874, 2008.    371. Gluckman E: Allogeneic transplantation strategies including haploidentical transplanta-
                    340. Thein SL, Menzel S: Discovering the genetics underlying foetal haemoglobin produc-  tion in sickle cell disease. Hematology Am Soc Hematol Educ Program 2013:370–376, 2013.
                     tion in adults. Br J Haematol 145(4):455–467, 2009.    372. Locatelli F, Pagliara D: Allogeneic hematopoietic stem cell transplantation in children
                    341. Uda M, Galanello R, Sanna S, et al: Genome-wide association study shows BCL11A   with sickle cell disease. Pediatr Blood Cancer 59(2):372–376, 2012.
                     associated with persistent fetal hemoglobin and amelioration of  the phenotype of     373. Walters MC, Hardy K, Edwards S, et al: Pulmonary, gonadal, and central nervous sys-
                     beta-thalassemia. Proc Natl Acad Sci U S A 105(5):1620–1625, 2008.  tem status after bone marrow transplantation for sickle cell disease. Biol Blood Marrow
                    342. Wyszynski DF, Baldwin CT, Cleves MA, et al: Polymorphisms near a chromosome 6q   Transplant 16(2):263–272, 2010.
                     QTL area are associated with modulation of fetal hemoglobin levels in sickle cell ane-    374. Hsieh MM, Kang EM, Fitzhugh CD, et al: Allogeneic hematopoietic stem-cell trans-
                     mia. Cell Mol Biol (Noisy-le-grand) 50(1):23–33, 2004.  plantation for sickle cell disease. N Engl J Med 361(24):2309–2317, 2009.







          Kaushansky_chapter 49_p0759-0788.indd   787                                                                   9/18/15   3:02 PM
   807   808   809   810   811   812   813   814   815   816   817