Page 808 - Williams Hematology ( PDFDrive )
P. 808

782  Part VI:  The Erythrocyte  Chapter 49:  Disorders of Hemoglobin Structure: Sickle Cell Anemia and Related Abnormalities  783




                    41.  Gladwin MT, Schechter AN: Nitric oxide therapy in sickle cell disease. Semin Hematol     73.  Nath KA, Grande JP, Haggard JJ, et al: Oxidative stress and induction of heme oxygen-
                     38(4):333–342, 2001.                                  ase-1 in the kidney in sickle cell disease. Am J Pathol 158(3):893–903, 2001.
                    42.  Enwonwu CO, Xu XX, Turner E: Nitrogen metabolism in sickle cell anemia: Free amino     74.  Solovey A, Gui L, Key NS, et al: Tissue factor expression by endothelial cells in sickle
                     acids in plasma and urine. Am J Med Sci 300(6):366–371, 1990.  cell anemia. J Clin Invest 101(9):1899–1904, 1998.
                    43.  Lopez BL, Barnett J, Ballas SK, et al: Nitric oxide metabolite levels in acute vaso-occlu-    75.  Solovey A, Lin Y, Browne P, et al: Circulating activated endothelial cells in sickle cell
                     sive sickle-cell crisis. Acad Emerg Med 3(12):1098–1103, 1996.  anemia. N Engl J Med 337(22):1584–1590, 1997.
                    44.  Lopez BL, Davis-Moon L, Ballas SK, et al: Sequential nitric oxide measurements dur-    76.  Wun T, Cordoba M, Rangaswami A, et al: Activated monocytes and platelet-monocyte
                     ing the emergency department treatment of acute vasoocclusive sickle cell crisis. Am J   aggregates in patients with sickle cell disease. Clin Lab Haematol 24(2):81–88, 2002.
                     Hematol 64(1):15–19, 2000.                           77.  Patel N, Gonsalves CS, Malik P, et al: Placenta growth factor augments endothelin-1
                    45.  Morris CR, Kuypers FA, Larkin S, et al: Arginine therapy: A novel strategy to induce   and endothelin-B receptor expression via hypoxia-inducible factor-1 alpha.  Blood
                     nitric oxide production in sickle cell disease. Br J Haematol 111(2):498–500, 2000.  112(3):856–865, 2008.
                    46.  Morris CR, Kuypers FA, Larkin S, et al: Patterns of arginine and nitric oxide in patients     78.  Perelman N, Selvaraj SK, Batra S, et al: Placenta growth factor activates monocytes and
                     with sickle cell disease with vaso-occlusive crisis and acute chest syndrome. J Pediatr   correlates with sickle cell disease severity. Blood 102(4):1506–1514, 2003.
                     Hematol Oncol 22(6):515–520, 2000.                   79.  Wang X, Mendelsohn L, Rogers H, et al: Heme-bound iron activates placenta growth
                    47.  Kato GJ, Wang Z, Machado RF, et al: Endogenous nitric oxide synthase inhibitors in   factor in erythroid cells via erythroid Kruppel-like factor. Blood 124(6):946–954, 2014.
                     sickle cell disease: Abnormal levels and correlations with pulmonary hypertension, desat-    80.  Hillery CA, Panepinto JA: Pathophysiology of stroke in sickle cell disease. Microcircula-
                     uration, haemolysis, organ dysfunction and death. Br J Haematol 145(4):506–513, 2009.  tion 11(2):195–208, 2004.
                    48.  Kato GJ, Taylor JG 6th: Pleiotropic effects of intravascular haemolysis on vascular     81.  Prengler M, Pavlakis SG, Prohovnik I, et al: Sickle cell disease: The neurological compli-
                     homeostasis. Br J Haematol 148(5):690–701, 2010.      cations. Ann Neurol 51(5):543–552, 2002.
                    49.  Frenette PS, Atweh GF: Sickle cell disease: Old discoveries, new concepts, and future     82.  Granger DN, Korthuis RJ: Physiologic mechanisms of postischemic tissue injury. Annu
                     promise. J Clin Invest 117(4):850–858, 2007.          Rev Physiol 57:311–332, 1995.
                    50.  Reiter CD, Wang X, Tanus-Santos JE, et al: Cell-free hemoglobin limits nitric oxide     83.  Grisham MB, Granger DN, Lefer DJ: Modulation of leukocyte-endothelial interactions
                     bioavailability in sickle-cell disease. Nat Med 8(12):1383–1389, 2002.  by reactive metabolites of oxygen and nitrogen: Relevance to ischemic heart disease.
                    51.  Hebbel RP, Yamada O, Moldow CF, et al: Abnormal adherence of sickle erythrocytes   Free Radic Biol Med 25(4–5):404–433, 1998.
                     to cultured vascular endothelium: Possible mechanism for microvascular occlusion in     84.  Field JJ, Nathan DG, Linden J: Targeting iNKT cells for the treatment of sickle cell
                     sickle cell disease. J Clin Invest 65(1):154–160, 1980.  disease. Clin Immunol 140(2):177–183, 2011.
                    52.  Hoover R, Rubin R, Wise G, et al: Adhesion of normal and sickle erythrocytes to endo-    85.  Eilertsen KE, Osterud B: Tissue factor: (patho)physiology and cellular biology. Blood
                     thelial monolayer cultures. Blood 54(4):872–876, 1979.  Coagul Fibrinolysis 15(7):521–538, 2004.
                    53.  Barabino GA, McIntire LV, Eskin SG, et al: Rheological studies of erythrocyte-endothe-    86.  Key NS, Slungaard A, Dandelet L, et al: Whole blood tissue factor procoagulant activity
                     lial cell interactions in sickle cell disease. Prog Clin Biol Res 240:113–127, 1987.  is elevated in patients with sickle cell disease. Blood 91(11):4216–4223, 1998.
                    54.  Mohandas N, Evans E: Sickle erythrocyte adherence to vascular endothelium. Morpho-    87.  Krishnaswamy S: The interaction of human factor VIIa with tissue factor. J Biol Chem
                     logic correlates and the requirement for divalent cations and collagen-binding plasma   267(33):23696–23706, 1992.
                     proteins. J Clin Invest 76(4):1605–1612, 1985.       88.  Chantrathammachart P, Pawlinski R: Tissue factor and thrombin in sickle cell anemia.
                    55.  Kaul DK, Tsai HM, Liu XD, et al: Monoclonal antibodies to alphaVbeta3 (7E3 and   Thromb Res 129 Suppl 2:S70–S72, 2012.
                     LM609) inhibit sickle red blood cell-endothelium interactions induced by platelet-acti-    89.  Setty BN, Kulkarni S, Dampier CD, et al: Fetal hemoglobin in sickle cell anemia: Rela-
                     vating factor. Blood 95(2):368–374, 2000.             tionship to erythrocyte adhesion markers and adhesion. Blood 97(9):2568–2573, 2001.
                    56.  Frenette PS: Sickle cell vaso-occlusion: Multistep and multicellular paradigm.  Curr     90.  Kurantsin-Mills J, Ofosu FA, Safa TK, et al: Plasma factor VII and thrombin-antith-
                     Opin Hematol 9(2):101–106, 2002.                      rombin III levels indicate increased tissue factor activity in sickle cell patients. Br J Hae-
                    57.  Gee BE, Platt OS: Sickle reticulocytes adhere to VCAM-1. Blood 85(1):268–274, 1995.  matol 81(4):539–544, 1992.
                    58.  Parsons SF, Lee G, Spring FA, et al: Lutheran blood group glycoprotein and its newly     91.  Tomer A, Harker LA, Kasey S, et al: Thrombogenesis in sickle cell disease. J Lab Clin
                     characterized mouse homologue  specifically bind  alpha5 chain-containing human   Med 137(6):398–407, 2001.
                     laminin with high affinity. Blood 97(1):312–320, 2001.    92.  Sparkenbaugh E, Pawlinski R: Interplay between coagulation and vascular inflamma-
                    59.  Swerlick RA, Eckman JR, Kumar A, et al: Alpha 4 beta 1-integrin expression on sickle   tion in sickle cell disease. Br J Haematol 162(1):3–14, 2013.
                     reticulocytes: Vascular cell adhesion molecule-1-dependent binding to endothelium.     93.  Chen J, Hobbs WE, Le J, et al: The rate of hemolysis in sickle cell disease correlates with the
                     Blood 82(6):1891–1899, 1993.                          quantity of active von Willebrand factor in the plasma. Blood 117(13):3680–3683, 2011.
                    60.  Udani M, Zen Q, Cottman M, et al: Basal cell adhesion molecule/lutheran protein. The     94.  Zhang Y, Dai Y, Wen J, et al: Detrimental effects of adenosine signaling in sickle cell
                     receptor critical for sickle cell adhesion to laminin. J Clin Invest 101(11):2550–2558,   disease. Nat Med 17(1):79–86, 2011.
                     1998.                                                95.  Zhang Y, Xia Y: Adenosine signaling in normal and sickle erythrocytes and beyond.
                    61.  Okpala I: The intriguing contribution of white blood cells to sickle cell disease—A red   Microbes Infect 14(10):863–873, 2012.
                     cell disorder. Blood Rev 18(1):65–73, 2004.          96.  Tsaras G, Owusu-Ansah A, Boateng FO, et al: Complications associated with sickle cell
                    62.  Okpala I: Leukocyte adhesion and the pathophysiology of sickle cell disease. Curr Opin   trait: A brief narrative review. Am J Med 122(6):507–512, 2009.
                     Hematol 13(1):40–44, 2006.                           97.  Harris JW, Brewster HH, Ham TH, et al: Studies on the destruction of red blood cells. X.
                    63.  Tan P, Luscinskas FW, Homer-Vanniasinkam S: Cellular and molecular mechanisms of   The biophysics and biology of sickle-cell disease. AMA Arch Intern Med 97(2):145–168,
                     inflammation and thrombosis. Eur J Vasc Endovasc Surg 17(5):373–389, 1999.  1956.
                    64.  Hebbel RP, Osarogiagbon R, Kaul D: The endothelial biology of sickle cell disease:     98.  Bergeron MF, Cannon JG, Hall EL, et al: Erythrocyte sickling during exercise and ther-
                     Inflammation and a chronic vasculopathy. Microcirculation 11(2):129–151, 2004.  mal stress. Clin J Sport Med 14(6):354–356, 2004.
                    65.  Steinberg MH, Mohandas N: Laboratory values, in Sickle Cell Disease: Basic Principles     99.  Monchanin G, Serpero LD, Connes P, et al: Effects of progressive and maximal exercise
                     and Clinical Practice, edited by Embury SH, Hebbel RP,, Mohandas N, , Steinberg MH,   on plasma levels of adhesion molecules in athletes with sickle cell trait with or without
                     pp 469–484. Raven, New York, 1994.                    alpha-thalassemia. J Appl Physiol 102(1):169–173, 2007.
                    66.  Belcher JD, Marker PH, Weber JP, et al: Activated monocytes in sickle cell disease:     100. Weisman IM, Zeballos RJ, Johnson BD: Cardiopulmonary and gas exchange responses
                     Potential role in the activation of vascular endothelium and vaso-occlusion.  Blood   to acute strenuous exercise at 1,270 meters in sickle cell trait. Am J Med 84(3 Pt 1):377–
                     96(7):2451–2459, 2000.                                383, 1988.
                    67.  Benkerrou M, Delarche C, Brahimi L, et al: Hydroxyurea corrects the dysregulated     101. Key NS, Derebail VK: Sickle-cell trait: Novel clinical significance. Hematology Am Soc
                     L-selectin expression and increased H(2)O(2) production of polymorphonuclear neu-  Hematol Educ Program 2010:418–422, 2010.
                     trophils from patients with sickle cell anemia. Blood 99(7):2297–2303, 2002.    102. Gupta AK, Kirchner KA, Nicholson R, et al: Effects of alpha-thalassemia and sickle
                    68.  Fadlon E, Vordermeier S, Pearson TC, et al: Blood polymorphonuclear leukocytes from   polymerization tendency on the urine-concentrating defect of individuals with sickle
                     the majority of sickle cell patients in the crisis phase of the disease show enhanced   cell trait. J Clin Invest 88(6):1963–1968, 1991.
                     adhesion to vascular endothelium and increased expression of CD64.  Blood 91(1):     103. Yium J, Gabow P, Johnson A, et al: Autosomal dominant polycystic kidney disease
                     266–274, 1998.                                        in blacks: Clinical course and effects of sickle-cell hemoglobin.  J Am Soc Nephrol
                    69.  Francis R Jr, Hebbel RP: Hemostasis, in Sickle Cell Disease: Basic Principles and Clinical   4(9):1670–1674, 1994.
                     Practice, edited by Embury SH, Hebbel RP, Mohandas N, Steinberg MH, pp 299–310.     104. Kark JA, Ward FT: Exercise and hemoglobin S. Semin Hematol 31(3):181–225, 1994.
                     1994, Raven, New York, 1994..                        105. Austin H, Key NS, Benson JM, et al: Sickle cell trait and the risk of venous thromboem-
                    70.  Hofstra TC, Kalra VK, Meiselman HJ, et al: Sickle erythrocytes adhere to polymor-  bolism among blacks. Blood 110(3):908–912, 2007.
                     phonuclear neutrophils and activate the neutrophil respiratory burst.  Blood 87(10):     106. Pastore LM, Savitz DA, Thorp JM Jr: Predictors of urinary tract infection at the first
                     4440–4447, 1996.                                      prenatal visit. Epidemiology 10(3):282–287, 1999.
                    71.  Inwald DP, Kirkham FJ, Peters MJ, et al: Platelet and leucocyte activation in childhood     107. Heller P, Best WR, Nelson RB, et al: Clinical implications of sickle-cell trait and glu-
                     sickle cell disease: Association with nocturnal hypoxaemia.  Br J  Haematol 111(2):   cose-6-phosphate dehydrogenase deficiency in hospitalized black male patients. N Engl
                     474–481, 2000.                                        J Med 300(18):1001–1005, 1979.
                    72.  Lard LR, Mul FP, de Haas M, et al: Neutrophil activation in sickle cell disease. J Leukoc     108. Glader BE, Propper RD, Buchanan GR: Microcytosis associated with sickle cell anemia.
                     Biol 66(3):411–415, 1999.                             Am J Clin Pathol 72(1):63–64, 1979.







          Kaushansky_chapter 49_p0759-0788.indd   783                                                                   9/18/15   3:02 PM
   803   804   805   806   807   808   809   810   811   812   813