Page 64 - PRE-U STPM MATHEMATICS (T) TERM 1
P. 64

Mathematics Term 1  STPM  Answers
                          π      π                              5.  ±(1 + 2i), ±(1 – 2i)
                 3.  (a)  2  3 cos   + i sin  4 , 4 + 4i
                          4      4                                       π      π         π        π  1
                                  π
                           π
                                                                                         4
                                                                                4
                                                                                                  4
                                                                         4
                  (b)  2 3  3 cos   + i sin  4 ; –144( 3 – 3i)    6.  (a)  2 1 cos   + i sin  2 ,  2 3 cos 1 –  2  + i sin 1 –  24 ;   , π
                                                                                                     2
                           3
                                  3
                                                                     6
                                                                        8
                                      1
                         π
                                  π
                  (c)  cos  1 –  2  + i sin  1 –  2 , –   ( 3 + i)  (b)   5   +   i ; 2, 0.927 rad
                                                                        5
                         6        6   2
                                       5
                  (d)  13 cos (2.4) + i sin (2.4)], 13 [cos (5.88) + i sin (5.88)]    7.  ±1.23 rad.
                           π
                                    π
                                                                    3
                                                                          5
                                                                                   1
                                                                               7
                  (e)  4  3 cos  1 –  2  + i sin  1 –  24 , 512(1 +  3i)    8.  sin  π, sin  π, sin  π, –    2 +  2
                           3        3                               8     8    8   2
                  (f)  23 [cos (0.485) + i sin (0.485)],               1           1

                                                                       2
                                                                                   2
                      — 5                                       9.  (a)  a =   (3 +  21), b =   (–3 +  21)
                       2
                     23 [cos (2.425) + i sin (2.425)]            (b)  (i)  –1, – 3  (ii)  5   ,   π
                 4.  (a)  cos   23  q + i sin   23  q   (b)  cos 8q + i sin 8q    4 12
                       12       12                                          1    3  1   3
                                                                     2
                  (c)  cos 5q + i sin 5q      (d)  cos   29  q + i sin   29  q     10.  4 cos q – 2; ±i,   +   2   i,   –   2   i
                                                                                    2
                                                                            2
                                            12
                                                    12
                  (e)  cos   11  q + i sin   11  q                    π     π         π        π

                        12      12                              11.  2  3 cos   + i sin  4 , 2 2 3 cos  1 –  2  + i sin  1 –  24  ;
                                                                                      4
                                                                      6
                                                                                               4
                                                                             6
                               π
                        π
                                                                                         5
                                                                            5
                 5.   1   3 cos   + i sin  4 ,   i                1     2k  +  2 π + i sin  1 2k  +  2 π4 , k = 0, 1, 2
                   2    4      4  32                              — 1 3 cos  1  3  36  3  36
                      — 1  π      π                               2 6
                       4
                 6.  (a)  ±2   3 cos   + i sin  4
                           8      8                             13.  a = 5, b = –10, c = 1;
                  (b)  ± 5 [cos (–0.464) + i sin (–0.464)]         2 cos  , 2 cos  π, 2 cos  π, 2 cos  π
                                                                                   3
                                                                                          4
                                                                            2
                                                                      π
                  (c)  ± 13 [cos (–0.588) + i sin (–0.588)]           5     5   π  5      5
                             π
                                      π
                  (d)  ± 2  3 cos  1 –  2  + i sin  1 –  24      14.  (a)  |z| = 4 ; arg z = –  6
                             12
                                      12
                       — 3   π        π                          (c)   1  (–1 +  3i)
                       4
                  (e)  ±2   3 cos  1 –  2  + i sin  1 –  24         32
                                      8
                             8
                                                                             2π
                       — 1 4  π   π                             15.  83 cos  2π  + i sin  4  ;
                  (f)  ±3   3 cos   + i sin  4                        3      3
                           8      8
                     — 1  2k   1       2k  1                     1.5321 + 1.2856i, –1.8794 + 0.6840i, 0.3473 – 1.9696i
                 7.  (a)  2 3 cos  1   +  2 π + i sin  1   +  2 π4 , k = 0, 1, 2
                      6
                           3  12        3  12                   16.  (a)  w = 1 + i ; real part = 1, imaginary part = 1
                                                                                    π
                                                                             π
                      1
                      —
                  (b)  5 3 cos  1 2k π – 0.3092  + i sin  1 2k  – 0.30924 , k = 0, 1, 2  (b)  w =  2  3 cos   + i sin  4
                      3
                                                                                    4
                                                                             4
                           3
                                         3
                      — 1  2k             2k                     (c)  1.0842 + 0.2905i, –0.7937 + 0.7937i, –0.2905 – 1.0842i
                  (c)  13 3 cos  1  π – 0.3922  + i sin  1  π – 0.39224 , k = 0, 1, 2
                       3
                            3             3                                π        π          5π     5π
                      — 1  2k  1       2k  1                    17.  z = 4 2 3 cos1 –  2  + i sin 1 –  24 , w = 2 3 1 cos    + i sin  4  ;
                  (d)  2 3 cos  1  3   –  2 π + i sin  1  3   –  2 π4 , k = 0, 1, 2  8  4  4    6      6
                      3
                              18
                                           18
                                                                                   π
                                                                             π
                      — 1  2k          2k                         w 6  =   81    3 cos   + i sin  4
                                           1
                               1
                  (e)  2 3 cos  1   –  2 π + i sin  1   –  2 π4 , k = 0, 1, 2  z  128  6  6
                      3
                           3  12        3  12
                      — 1  2k  1       2k   1                   18.  (a)  3 – i, 1 + i 3, – 3 + i, –1 – i 3
                  (f)  3 3 cos  1   +  2 π + i sin  1   +  2 π4 , k = 0, 1, 2
                      6
                           3  12        3  12                   19.  (a)  real part = 32, imaginary part = –32 3
                                              nπ
                             π
                                   n
                 8.  |z| = 2, arg z =   , z  = 2 3 cos  nπ  + i sin  4       π        π
                               n
                             3         3      3                  (b)  z  = 83 cos  1 –  2  + i sin  1 –  24  = 4 3 – 4i
                                                                     1
                     1    2       2     1                                    6        6
                   2
                                      3
                 9.  z  =    3 cos  π + i sin  π4 , z  =   [cos π + i sin π]   5π  5π
                     4    3       3     8                           z  = 83 cos    + i sin  4  = –4 3 + 4i
                                                                                   6
                                                                            6
                                                                     2
                             π
                      π
                                             3
                                     3
                 10.  23 cos   + i sin  4 , 2 2   3 cos  π + i sin  π4
                      6      6       4       4
                                            7
                               7

                  z =   1 1 3 cos  1 2k  –  2 π + i sin  1 2k  –  2 π4 , k = 0, 1, 2  Chapter  5  Analytic Geometry
                      —     3  36       3  36
                     2  6                                     Exercise 5.1
                     π
                                                                       2
                                                                   2
                 11.  q =   ,   π                               1.  3x  + 3y  – 16y + 16 = 0
                     3  4                                       2.  y  = 3a(2x – 3a)
                                                                  2
                                                                  2
                                                                     2
               STPM PRACTICE 4                                  3.  x  + y  + 4y = 0
                                                                4.  16x + 10y – 15 = 0
                        7
                              4
                 1.  (a)  p =  , q = –                          5.  x  + y  – 5x = 0
                                                                  2
                                                                     2
                        5     5
                                                                         2
                    (b)  p = 2 – i, q = 2 + i                   6.  (a)  (y – 3)  = x + 1
                                                                       2
                                                                 (b)  27y  = 4x   3
                 3.  (1, 2), (–1, –2)                            (c)  (x – 4)y = 9
                               1
                 4.  |z | =  2 , arg z  = –  π                   (d)  y = (x – 1)(x – 2)
                                                                     2
                   1        1  4                                 (e)  x  = 12(y – 1)
                                3
                                                                         2
                    |z | = 2 2 , arg z  = –  π                   (f)  (y – 1)  = (x + 1)   3
                                4
                            2
                   2
                                                                 (g)  y(x – 1)  = 8
                                                                          2
                    |z | = 1, arg z  = –  π                      (h)  x (y + 1) = 64
                                                                     2
                   3       3   3
                                                                                                      283
       Answers STPM Math T S1.indd   283                                                               3/28/18   4:25 PM
   59   60   61   62   63   64   65   66   67   68   69