Page 70 - PRE-U STPM MATHEMATICS (T) TERM 1
P. 70

Mathematics Term 1  STPM  Answers

                 2.   1 + x                                      (c)                y
                   1 – 3x                                              y = –   3x –   3 + 4  y =   3x +  3 + 4
                        1      1
                        —     – —
                        2
                  = (1 + x) (1 – 3x)    2
                                                                                   6
                                1
                              1
                   3    1    1 21  – 1 2  4                                        5
                                2
                              2
                  =  1 +  (x) +   2!  (x)  + …                       (–7, 4) (–4, 4)  (–1, 4)  4 3  (2, 4)  (5, 4)
                                      2
                        2
                                    1
                   3   1      1 –  2 1 21 –  – 1 2  4                              2 1
                                    2
                     1 –  (–3x) +   2!  (–3x)  + …                     –7 –6  –5–4 –3  –2  –1 0  1 2 3 4 5  x
                                            2
                       2
                       1
                                     3
                           1
                  =  3 1 +  x –  x  + …43 1 +  x +   27  x  + …  4
                             2
                                            2
                       2   8         2    8
                      3
                                                1
                                        3
                                    1
                                          2
                                                  2
                             2
                  = 1 +  x +   27  x  + … +  x +  x  + … –  x  + …            3  –2  5  1  0  0
                      2    8        2   4       8               4.           1  1  0  2 u  0  1  0 2
                  = 1 + 2x + 4x  + …                                          2  –1  4  0  0  1
                           2
                                      1
                                             1
                  Expansion is valid for :  5 x : –   , x ,  6
                                      3      3                                1   0  2 u  0  1  0
                                         1 +   1                      R  ↔  R 2   1  3  –2  5  1  0  0 2
                                                                       1
                            1
                  By taking x =  ,   1 + x   =   9                        →   2  –1  4  0  0  1
                                            1
                            9  1 – 3x   1 – 31 2
                                            9                    R  = –3R  +  R 2  1  0  2 u  0  1  0
                                                                  2
                                                                       1
                                    =   5                                 →   1  0  –2  –1  1  –3  0 2
                                        3                        R  = –2R  +  R 3  0  –1  0  0  –2  1
                                                                       1
                                                                  3
                      5    ≈ 1 + 21 2  + 41 2 2
                                    1
                               1
                                                                                           1
                                                                                  0
                      3        9    9                                 R  ↔  R 3   1  1 0  –1  2 0 u  0 0  –2  0 1 2
                                                                       2
                               1
                                    1
                     5 × 3   ≈ 1 + 21 2  + 41 2 2                         →   0  –2  –1  1  –3  0
                    3 × 3      9    9
                               1
                                    1
                      15  ≈ 1 + 21 2  + 41 2 2                                1   0  2 u  0  1  0
                      3        9    9                                 R  = –R    1  0  1  0  0  2  –1 2
                                                                           2
                                                                       2
                                     1
                                1
                                       2
                      15 ≈ 33 1 + 21 2  + 41 2 4                          →   0  –2  –1  1  –3  0
                                9    9
                        ≈   103                                               1   0  2 u  0  1  0
                           27                                      R  = 2R  + R    1  0  1  0  0  2  –1 2
                                                                    3
                                                                           3
                                                                        2
                  Alternative solution:                                   →   0   0  –1  1  1  –2
                      5    ≈ 1 + 21 2  + 41 2 2                               1   0  2  0  1  0
                               1
                                    1
                      3        9    9                                 R  = –R    1  0  1  0 u  0  2  –1 2
                                                                           3
                                                                       3
                                    1
                               1
                     5 × 5   ≈ 1 + 21 2  + 41 2 2                         →   0   0  1  –1  –1  2
                    3 × 5      9    9
                      5              2                                        1   0  0 u  2  3  –4
                               1
                                    1
                                                                                        0
                                                                                           2
                      15   ≈ 1 + 21 2  + 41 2                      R  = –2R  + R   1  1  0 0  1 0  0 1  –1  –1  –1 2
                                                                   1
                                                                        3
                               9
                                    9
                                                                          →
                                                                                              2
                      15 ≈      5     2
                                     1
                               1
                           1 + 21 2  + 41 2                                       3  –2  5    2  3  –4
                               9
                                     9
                                                                                              0
                                                                                                 2
                                                                                           =
                                                                                     0
                        ≈   405                                  The inverse matrix of  1  1 2  –1  2 4 2 1 –1 –1  –1 2
                                                                                                    2
                           103
                 3.  (a)      27x  – 9y  + 54x + 72y – 360 = 0
                                 2
                             2
                           27(x + 2x) – 9(y  – 8y) – 360 = 0                 3  –2  5  x     45
                              2
                                      2
                                                                                       y  =  15
                           2
                                      2
                    27[(x + 1) – 1] – 9[(y – 4)  – 16] – 360  = 0           1  1  0  2 21 2 1 2
                           2
                     27(x + 1) – 9(y – 4) – 27 + 144 – 360 = 0               2  –1  4  z     32
                                  2
                                              2
                                27(x + 1) – 9(y – 4) = 243         2  3  –4  3  –2  5   x    2  3  –4  45
                                       2
                                                                                        y  =  0
                                 (x + 1) 2   –   (y – 4) 2    = 1  1  0  2  –1 21  1  0  2 21 2 1  2  –1 21 2
                                                                                                       15
                                   9       27                      –1  –1  2  2  –1  4  z   –1  –1  2  32
                              2
                  (b)  a = 3, c =  a  + b  =  9 + 27  = 6                              x     90 + 45 – 128
                                 2
                                                                                       y  =
                     Centre = (–1, 4)                                                    1 2 1  0 + 30 – 32  2
                     Vertices = (–4, 4) and (2, 4)                                     z     –45 – 15 + 64
                     Foci = (–7, 4) and (5, 4)                                         x     7
                                                                                       1 2 1 2
                                                                                       y  =  –2
                     Equation of asymptotes:                                           z     4
                     (y – 4) = ±   3 3  (x + 1)
                              3                                  Hence, x = 7, y = –2, z = 4.
                     y = – 3x –  3 + 4 and y =  3x +  3 + 4
                                                                                                      289
       Answers STPM Math T S1.indd   289                                                               3/28/18   4:25 PM
   65   66   67   68   69   70   71   72   73   74