Page 71 - PRE-U STPM MATHEMATICS (T) TERM 1
P. 71

Mathematics Term 1  STPM  Answers

               5.  Let z =  3 + i                                 (Normal vector n  = Parallel vector of the line L )
                                                                              1
                                                                                                  1
                           2
                |z| =  ( 3)  + (1)  = 2                           Vector equation of L : r = (3i – 6j + 2k) + l(4i – 9j – 7k)
                       2
                                                                               1
                       –1 1  π                                    Parametric equations of L :
                Arg z = tan     =                                                  1
                          3  6                                    x = 3 + 4l, y = –6 – 9l, z = 2 – 7l
                      π
                             π
                z = 21 cos   + i sin  2                                    2    5     –3
                                                                         1 2 1 2 1 2
                      6      6                                       →
                                                               (b)  (i)  EF  =  2  –   1  =   1
                                   π
                            π
                                     12
                     12
                ( 3 + i)  =  3 21 cos   + i sin  24  ;                     3    –3    6
                            6      6                                 Vector equation of L :
                              π
                                      π
                                                                                  2
                                         12
                ( 3 – i)  =  3 21 cos  1 –  2  + i sin  1 –  224     r = (5i + j – 3k) + µ(–3i + j + 6k)
                    12
                              6       6
                                                                     Parametric equations of L : 1
                ( 3 + i) + ( 3 – i)                                  x = 3 + 4l,  y = –6 – 9l, z = 2 – 7l
                            12
                     12
                                                 π
                                        π
                      π
                             π
                               12
                =  3 21 cos   + i sin  24  +  3 21 cos  1 –  2  + i sin  1 –  224 12         Parametric equations of L : 2
                      6      6          6        6                   x = 5 – 3µ,  y = 1 + µ, z = –3 + 6µ
                                    12
                = 2 3 cos   12π  + i sin   12π 4  + 2 3 cos  1 –  12π 2  + i sin  1 –  12π 24
                  12
                       6       6           6         6               Equating the two lines:
                                  12
                  12
                = 2 [cos 2π + i sin 2π] + 2 [cos(–2π) + i sin (–2π)]      3 + 4l  = 5 – 3µ
                = 2 [1 + i(0)] + 2 [1 + i(0)]                            3µ + 4l  = 2    ......................a
                            12
                  12
                = 2  (shown)                                             –6 – 9l  = 1 + µ
                  13
                                                                              µ  = –7 – 9l   .....................b
                                                                          2 – 7l  = –3 + 6µ   .....................c
                         12
                 3
                                 12
                  2z  – [( 3 + i)  + ( 3 – i) ]i = 0
                            2z  – 2 i = 0                            Substitute  b into a:
                                 13
                              3
                                  3
                                     12
                                 z  = 2 i                              3(–7 – 9l) + 4l = 2
                                 z  = 2 (0 + i)                       –21 – 27l + 4l = 2
                                     12
                                  3
                                                                             23l = –23
                        π
                               π
                z  = 2 1 cos   + i sin  2                                      l = –1
                   12
                3
                      1  2     2              1
                     —     π           π     —                       When l = –1, from b: µ = –7 – 9(–1) = 2,
                    12 3
                                              3
                z  = (2 )   3 cos  1  + 2kπ2  + i sin  1  + 2kπ24
                           2           2                             checking from equation c:
                         π
                                     π
                z  = 16  3 cos  1  +   2kπ 2  + i sin  1  +   2kπ 24  , k = 0, 1, 2  l = –1 , LHS = 2 – 7l = 2 – 7(–1) = 9
                         6   3       6   3                           µ = 2   , RHS = –3 + 6µ = –3 + 6(2) = 9 = LHS

                                   π
                            π
                k  = 0, z = 161 cos   + i sin  2                     The equations are consistent with l = – 1 and µ = 2,
                            6      6                                 RHS = LHS, therefore the two lines L  and L
                               1
                      = 161  3   + i  2                              intersect. (shown)       1    2
                          2    2
                      = 8( 3 + i)                                    Position vector of point of intersection = –i + 3j + 9k
                                                                     Coordinates of point of intersection = (–1, 3, 9)
                                   5π
                k = 1, z = 161 cos  5π  + i sin  2                         n  . n
                            6      6                              (ii)  cos q =   1  2
                               1
                                                                               2
                                                                            1
                     = 161 –   3   + i  2                                  |n  ||n |
                                                                                    .
                           2   2                                          (4i – 9j – 7k)   (–3i + j + 6k)
                                                                         =
                     = 8(– 3 + i)                                                 146  .  46
                                   3π
                k = 2, z = 161 cos  3π  + i sin  2                       =  –63
                            2      2                                        6 716
                     = 16(0 – i)                                          q = 140.2°
                     = –16i
                                                                     Acute angle = 180° – 140.2° = 39.8°
                The roots are 8( 3 + i), 8(– 3 + i) and –16i.
                                                              7.  (a)  p(x) has a factor (x – 3),
                                                                                   2
                                                                         3
                   →    5     1     4                              p(3) = a(3)  – (1 + 6a)(3)  + 2(8a – b)(3) – 27 = 0
                        5  –
                              4  =  1
               6.  (a)  AB =  1 2 1 2 1 2                                   27a – 9 – 54a + 48a – 6b – 27 = 0
                        –1    –2    1                                                      21a – 6b = 36
                       1 2 1 2 1 2
                   →    4     1     3                                                       7a – 2b = 12
                   AC =  3  –   4  =  –1                                                          (shown)
                        1     –2    3
                                i  j   k                       (b)  From 7a – 2b = 12,

                                                                  substitute –2b = 12 – 7a into
                           →
                      →
                   n  =  AB ×  AC =  4  1  1
                                                                        3
                                                                                 2
                   1                                              p(x) = ax  – (1 + 6a)x  + (16a – 2b)x – 27,
                                3  –1  3                           p(x) = ax  – (1 + 6a)x  + (16a + 12 – 7a)x – 27
                                                                                 2
                                                                        3
                             = (3 + 1)i – (12 – 3)j + (–4 – 3)k      p(x) = ax  – (1 + 6a)x  + 3(3a + 4)x – 27
                                                                        3
                                                                                 2
                             = 4i – 9j – 7k
             290
       Answers STPM Math T S1.indd   290                                                               3/28/18   4:25 PM
   66   67   68   69   70   71   72   73   74