Page 10 - Top Class Additional Mathematics Tg 4
P. 10

Additional Mathematics  Form 4  Chapter 1 Functions

             14.  Solve the following problems.  PL 4
                 Selesaikan masalah-masalah berikut.
                   Example

                  Given the functions f : x → 4x – 1 and g : x → (x – 3) . Find
                                                                 2
                                                     2
                  Diberi  fungsi f : x → 4x – 1 dan g : x → (x – 3) . Cari
                  (i)  fg(x),      (ii)  fg(3).
                                                                                2
                  (i)  fg(x) = f[(x – 3) ]                        (ii)  fg(3) = 4(3) – 24(3) + 35
                                    2
                                   2
                           = 4(x – 3)  – 1                                 = 36 – 72 + 35
                           = 4(x  – 6x + 9) – 1                            = –1
                               2
                           = 4x  – 24x + 36 – 1
                              2
                           = 4x  – 24x + 35
                              2
                  (a)  Given f : x → 3x + 8 and g : x → x – 6. Find
                      Diberi f : x → 3x + 8 dan g : x → x – 6. Cari
                      (i)  fg(x),           (ii)  fg(–2).
                      (i)  fg(x) = f(x – 6)                         (ii)  fg(–2) = 3(–2) – 10
                               = 3(x – 6) + 8                                 = –16
                               = 3x – 18 + 8
                               = 3x – 10


                  (b)  A function g is defined by g : x → x + 2. Find the function f for each of the following composite functions.
                      Fungsi g ditakrifkan oleh g : x → x + 2. Cari fungsi f bagi setiap fungsi gubahan berikut.
                      (i)  fg : x → x  + 4x + 4,                    (ii)  gf : x → 2x  – 3x + 4.
                                  2
                                                                                 2
                                                                                   2
                      (i)   fg(x) = x  + 4x + 4                     (ii)    gf(x) = 2x  – 3x + 4
                                    2
                                                                                   2
                          f(x + 2) = x  + 4x + 4                         f(x) + 2 = 2x  – 3x + 4
                                    2
                                                                                   2
                                                                            f(x) = 2x  – 3x + 2
                          Let  y = x + 2
                              x = y – 2
                                         2
                          So, f(y) = (y – 2)  + 4(y – 2) + 4
                                    2
                                  = y  – 4y + 4 + 4y – 8 + 4
                                  = y 2
                          ∴  f(x) = x 2
                  (c)  Given f(x) = px + q and f (x) = 4x + 6. Find the values of p and q.
                                             2
                      Diberi f(x) = px + q dan f (x) = 4x + 6. Cari nilai-nilai p dan q.
                                          2
                               ff(x) = 4x + 6       Comparing:        When p = 2,           When p = –2,
                           f(px + q) = 4x + 6       p  = 4              pq + q = 6            pq + q = 6
                                                     2
                       p(px + q) + q = 4x + 6       p  = ±√4            2q + q = 6           –2q + q = 6
                        p x + pq + q = 4x + 6         = 2 or –2            3q = 6                –q = 6
                         2
                                                                             q = 2                q = –6

                                                                             3x
                  (d)  Functions g and h are defined as g : x → 5x – 6 and h : x →   . Find the value of x if gh(x) = h(x).
                                                                            x – 2
                                                                   3x
                      Fungsi g dan h ditakrifkan oleh g : x → 5x – 6 dan h : x →   . Cari nilai x jika gh(x) = h(x).
                                                                  x – 2
                       g(x) = 5x – 6                         3x          3x
                               3x                         5       – 6 =   x – 2
                       h(x) =                               x – 2
                              x – 2                                      3x
                                                             15x   – 6 =
                          gh(x) = h(x)                       x – 2      x – 2
                                   3x
                          3x
                        g   x – 2   =   x – 2          15x – 6(x – 2) = 3x
                                                          15x – 6x + 12 = 3x
                                                                   6x = –12
                                                                    x = –2



             © Penerbitan Pelangi Sdn. Bhd.                    8
   5   6   7   8   9   10   11   12   13   14   15