Page 14 - Top Class Additional Mathematics Tg 4
P. 14

Additional Mathematics  Form 4  Chapter 1 Functions

                             x                                x – 1                            3
                  (c)  g(x) =   + 1               (d)  h(x) =                      (e)  h(x) =
                            4                                2x + 1                          x – 1
                      Let y = g(x)                     Let   y = h(x)                  Let  y = h(x)
                              x                              y =   x – 1                         3
                          y =   + 1                             2x + 1                      y =   x – 1
                             4
                         x                               2xy + y = x – 1
                            = y – 1                                                     xy – y = 3
                         4                                y + 1 = x – 2xy
                          x = 4(y – 1)                    y + 1 = x(1 – 2y)                xy = 3 + y
                                                                                               3 + y
                          x = 4y – 4                             y + 1                      x =
                                                             x =                                 y
                                                                                               3
                      Since g (y) = x,                          1 – 2y                      x =   + 1
                             –1
                                                             –1
                      g (y) = 4y – 4                   Since h (y) = x,                        y
                       –1
                                                               y + 1                   Since h (y) = x,
                                                                                             –1
                                                        –1
                      Substitute y with x,             h (y) =   1 – 2y                        3
                                                                                        –1
                       –1
                      g (x) = 4x – 4                   Substitute y with x,            h (y) =   + 1
                                                                                               y
                         –1
                      ∴ g  : x → 4x – 4                        x + 1                   Substitute y with x,
                                                        –1
                                                       h (x) =
                                                                                               3
                                                              1 – 2x                   h (x) =   + 1
                                                                                        –1
                                                                  x + 1                        x
                                                          –1
                                                       ∴ h  : x →
                                                                                                  3
                                                                 1 – 2x                ∴ h  : x →   + 1
                                                                                          –1
                                                                                                  x
             21.  Find the function f, g or h based on the given inverse function.  PL 4
                 Cari fungsi f, g dan h berdasarkan fungsi songsang yang diberikan.
                   Example                        (a)  f (x) = 3x – 4              (b)  f (x) =   x + 6
                                                       –1
                                                                                        –1
                         4 + x                                                                  5
                   –1
                  f (x) =                              Let  y  = f (x)
                                                               –1
                           2                                                           Let  y  = f (x)
                                                                                               –1
                                                          y  = 3x – 4
                          –1
                  Let y = f (x)                          3x  = y + 4                       y  =   x + 6
                         4 + x                                 y + 4                             5
                      y =                                 x  =                            5y  = x + 6
                           2                                    3
                    2y = 4 + x                         Since f (y) = x,                    x  = 5y – 6
                      x = 2y – 4                             y + 4
                                                       f (y) =                         Since f(y) = x,
                                                              3
                  Since f (y) = x,                                                     f(y) = 5y – 6
                  f (y) = 2y – 4                       Substitute y with x,
                                                       f (x) =   x + 4                 Substitute y with x,
                  Substitute y with x,                        3                        f(x) = 5x – 6
                  f (x) = 2x – 4                       ∴ f  : x →   x + 4
                                                                  3                    ∴ f : x → 5x – 6
                  ∴ f  : x → 2x – 4
                              x – 7                           x + 4                            5
                       –1
                                                       –1
                  (c)  g (x) =                    (d)  g (x) =                     (e)  h (x) =   – 2
                                                                                        –1
                               3                              x – 4                            x
                                                                –1
                                                                                                –1
                               –1
                      Let  y  = g (x)                  Let  y = g (x)                  Let  y  = h (x)
                                                                                               5
                          y  =   x – 7                      y =   x + 4                    y  =   – 2
                                3                               x – 4                          x
                         3y  = x – 7                    xy – 4y = x + 4                   5   = y + 2
                          x  = 3y + 7                    xy – x = 4y + 4                  x      5
                                                            x =   4y + 4                   x  =   y + 2
                      Since g(y) = x,                           y – 1
                      g(y) = 3y + 7                    Since g(y) = x,                 Since h(y) = x,
                                                                                               5
                                                             4y + 4                    h(y) =
                                                       g(y) =                                y + 2
                      Substitute y with x,                   y – 1
                      g(x) = 3x + 7                                                    Substitute y with x,
                                                       Substitute y with x,                    5
                      ∴ g : x → 3x + 7                 g(x) =   4x + 4                 h(x) =   x + 2
                                                             x – 1                                5
                                                                4x + 4                 ∴ h : x →
                                                       ∴ g : x →                                x + 2
                                                                 x – 1
             © Penerbitan Pelangi Sdn. Bhd.                   12
   9   10   11   12   13   14   15   16   17   18   19