Page 16 - Top Class Additional Mathematics Tg 4
P. 16

Additional Mathematics  Form 4  Chapter 1 Functions


                                                                                          2
                  (c)  Given the function h(x) = ax + b, where a . 0, a and b are constants and h (x) = 49x – 40, find
                                                                                  2
                      Diberi fungsi h(x) = ax + b, dengan keadaan a . 0, a dan b ialah pemalar dan h (x) = 49x – 40, cari
                      (i)  the value of a and of b, / nilai a dan b,
                      (ii)  h (–3),
                            –1
                                                                –1 2
                                           –1 2
                      (iii)  the value of x if (h ) (x) = 1 / nilai x jika (h ) (x) = 1.
                                                                                            –1 2
                      (i)  Given h(x) = ax + b       (ii)  h(x) = 7x – 5           (iii)    (h ) (x) = 1
                          h (x) = hh(x)                  Let y = h(x)                   x + 5
                            2
                               = h(ax + b)                  y = 7x – 5                    7   + 5
                               = a(ax + b) + b             7x = y + 5                       7      = 1
                               = a x + ab + b                   y + 5
                                  2
                                                            x =   7                      x + 5   + 5 = 7
                          Compare with 49x – 40,                                           7
                                                               –1
                           2
                          a  = 49                        Since h (y) = x,                    x + 5  = 2
                               
                           a =  49                       h (y) =  y + 5                       7
                                                          –1
                            = 7                                   7                          x + 5 = 14
                                                                                                 x = 9
                                                         Substitute y with x,
                           ab + b = –40                   –1    x + 5
                           7b + b = –40                  h (x) =   7
                              8b = –40                              –3 + 5
                                                             –1
                               b = –5                    ∴  h (–3) =
                                                                      7
                                                                    2
                                                                  =
                                                                    7
                                           3x – 6           mx + 6
                                     –1
                  (d)  It is given that f (x) =    and f (x) =    . Find   HOTS  Analysing
                                           7 + 4x           3 + nx
                                        3x – 6         mx + 6
                                  –1
                      Diberi bahawa f (x) =    dan f (x) =   . Cari
                                        7 + 4x         3 + nx
                      (i)  the values of m and n, / nilai m dan n,
                      (ii)  the value of x if f(4x + 3) = 7. / nilai x jika f(4x + 3) = 7.
                                  3x – 6                                                 7x + 6
                      (i)  f (x) =                                (ii)  f(4x + 3)  = 7,  f(x) =
                           –1
                                  7 + 4x                                                 3 – 4x
                          Let    y = f (x)                                     7 =   7(4x + 3) + 6
                                     –1
                                     3x – 6                                         3 – 4(4x + 3)
                                 y =
                                     7 + 4x                                         28x + 21 + 6
                           7y + 4xy = 3x – 6                                   7 =   3 – 16x – 12
                            7y + 6 = 3x – 4xy                                      28x + 27
                            7y + 6 = x(3 – 4y)                                 7 =   –9 – 16x
                                     7y + 6
                                 x =                                    7(–9 – 16x) = 28x + 27
                                     3 – 4y
                                                                       –63 – 112x = 28x + 27
                          Since f(y) = x,                                  –140x = 90
                                7y + 6                                                9
                          f(y) =                                                x = –
                                 3 – 4y                                              14
                          Substitute y with x,
                                7x + 6
                          f(x) =
                                 3 – 4x
                          Compare with
                                mx + 6
                          f (x) =
                                 3 + nx
                           7x + 6   =  mx + 6
                           3 – 4x  3 + nx
                          ∴  m = 7, n = –4







             © Penerbitan Pelangi Sdn. Bhd.                   14
   11   12   13   14   15   16   17   18   19   20