Page 68 - ACE YR IGCSE A TOP APPR' TO ADD MATH
P. 68

1
                                                                                          3
                                                                                   3
                    14.           1   dx =   ln (2x – 5) + c           (d)     –1  6xe  =  3xe  –  e 2x 4 –1
                                                                                       2x
                                                                                2x
                                2x – 5    2                                –4             2   –4
                                       a
                                                                                              3
                                      4
                                                                                   3
                           3 1 2   ln (2x – 5)  = ln 2                           = 3(–1)e 2(–1)  –  e 2(–1) 4  –
                                                                                              2
                                       4
                      1   ln (2a – 5) –   ln 3 = ln 2                                         3
                                   1
                                                                                   3
                      2            2                                                 3(–4)e 2(–4)  –  e 2(–4) 4
                                                                                              2
                             1  ln (2a – 5) = ln 2√3                             = –0.604
                             2
                                                                                        2
                               ln (2a – 5) = 2.485                        Area = 0.604 unit
                                      a = 8.5                                                                [2]
                                                            [4]      18.  Area under the curve
                    15.  When y = 0,                                   =     3   e  + e  + 3dx
                                                                            2x
                                                                                –2x
                             1
                      0 = 3 sin  2x +  π 2                               –3 1  2x  1  –2x  3
                                  2
                                                                                       4
                         1
                                                                               2
                                                                                        –3
 =  1                 sin  2x +  π 2   = 0                             =  3 2 e  –  e  + 3x
                              2
                                                                                             1
                                                                              1
                                                                         1
 2                            π                                        =  e  –  e  + 9 –  1  1 e  –  e  – 9
                                                                                                   2
                                                                                         –6
                                                                                –6
                                                                           6
                                                                                               6
 = √3                     2x +    = π                                    2    2        2     2
                              2
                               x  =  π                                 = 421.426
 = √(7)  –                         4                                   When x = 3, y = 406.431
 2
                       π
                             1
                       4  3 sin  2x +  π 2  dx                         Area of the shaded region = 6 × 406.431 – 421.426
                                                                                                       2
 2
 2
 =  1  8   + 3         0  3       2  π  π                                                   = 2017.16 unit    [5]
 2
                        3
                               1
 1                    =  –   cos  2x +  2 24 4                                3π
                          2
 = 2  2                 3              0                             19.  Area  =   8   sin 2x + cos 2x dx
 =                    =   unit 2                                              0
   2                    2                                   [4]                                 3π
                                                                               1
                                                                                         1
                                                                             3
 (b)                                                                       = –   cos 2x +   sin 2x 4  8
 1                          1            5                                     2         2      0
                                          2
 ==                 16.  Area =  (3 + 5)(2) –  x  – 7x + 15 dx             =  1 + √2  unit
                                                                                       2
                            2
                                        3
                                                                               2
                                x
                                    7x
                                             5
                                      2
                                 3
                               3
                                            4
                          = 8 –
                        Penerbitan Pelangi Sdn Bhd. All Rights Reserved.                                     [4]
                                        + 15x
                                   –
                                     2
                                3
                                             3

                          = 8 –  1  175  –  45 2                     20.  (a)  When y = 0,
                                                                           5 – e   = 0
                                                                              –x
                                      2
                                 6
                                                                             e   = 5
                                                                              –x
                          =  4  units                                     –x ln e = ln 5
                                  2
                            3
                                                            [4]                x = –ln 5
                    17.  (a)   dy   = 3e  + 6xe                           P(–ln 5, 0)
                                2x
                                      2x
                          dx
                            = e (3 + 6x)                                  When x = 0,
                               2x
                                                                          y = 5 – e
                                                                                 –0
                                                            [3]             = 4
                      (b)  e (3 + 6x) = 0                                 Q(0, 4)
                          2x
                               e  = 0  (rejected)                                                            [2]
                                2x
                             3 + 6x = 0                                (b)   dy  = e
                                                                               –x
                                x = –0.5                                  dx
                                                            [2]           When x = 0,
                                              2x
                                                    2x
                      (c)               dy  = 3e  + 6xe                    dy   = e
                                                                                –0
                                        dx                                dx
                                                                             = 1
                              (3e  + 6xe ) dx  = 3xe
                                2x
                                      2x
                                               2x
                                                                          m  = –1
                                                                            
                           3e  dx +   6xe  dx  = 3xe                      Equation of normal line:
                                               2x
                             2x
                                      2x
                                                                            y – 4  = –1(x – 0)
                                    6xe dx = 3xe  – 3   e  dx               y – 4 = –x
                                               2x
                                                     2x
                                      2x
                                                                              y = –x + 4
                                                       2
                                    6xe  dx = 3xe  – 3 1 1 e  + c         When y = 0,
                                      2x
                                               2x
                                                      2x
                                                    2
                                                                           –x + 4 = 0
                                                  3
                                    6xe  dx = 3xe  –   e  + c                 x = 4
                                               2x
                                                     2x
                                      2x
                                                  2                       R(4, 0)
                                                            [4]                                              [5]
                         Cambridge IGCSE
                                          TM
                  208     Ace Your Additional Mathematics
         Answers Add Math.indd   208                                                                             14/03/2022   12:29 PM
   63   64   65   66   67   68   69   70   71   72   73