Page 31 - Pra U STPM 2022 Penggal 2 - Mathematics
P. 31

Mathematics Semester 2  STPM  Chapter 4 Differential Equations

                                                                                   1   dx
                                                                                ∫
                                      Multiplying both sides with the integrating factor e     x  :
                                                  du     1    u     1       1
                                                      ∫
                                                                        ∫
                                                               ∫
                                                     e     x  dx  +    e     x  dx   = –1(e     x  dx )
                                                  dx        x
                                                          du
                                                              x + u  = –x
                Penerbitan Pelangi Sdn Bhd. All Rights Reserved.
                                                           dx
                                                            d
                                                               (ux)  = –x
                                                            dx
                                                                     ∫
                                                             \ ux  =    –x dx + A
                                                             \ ux  = –  x 2   + A
                                                                       2
                                      Substituting u =   1  ,
                                                     y 2
                                             \   x   = –  x 2   + A
                                               y 2    2

                                                 2
                                              \ y =    2x
                                                    –x  + 2A
                                                      2
                                                          2x
                                                 2

                                              \ y = ± 
                                                         2
                                                       –x  + 2A
                     Exercise 4.4


                  1.  Solve the differential equations                                                        4
                          dy    x + y                                dy    x – 2y
                     (a)      =                                 (b)      =
                          dx      x                                  dx      x
                                 2
                          dy    x  + 2y 2                              dy
                                                                             2
                     (c)      =                                 (d)  xy    = x  + y 2
                          dx      xy                                   dx
                            dy                                       dy    y  – yx 2
                                                                            3
                     (e)  xy    = x  – y 2                      (f)      =
                                  2
                            dx                                       dx    x  + y x
                                                                            3
                                                                                2
                                                                          dy     xy
                  2.  Show that, by substituting  y =  vx, the differential equation   dx   =   x  + y 2  can be transformed into
                                                                                2
                     x  dv   +   v 3   = 0.  Hence, find the particular solution if y = 2 when x = 1.
                       dx    1 + v 2
                                                                             dy   y – x + 1
                  3.  Using the substitution y – x = z, show that the differential equation   dx   =   y – x + 5   can be transformed
                     into   dz   = –    4  .  Hence, solve the differential equation.
                          dx     z + 5
                                                                          dy    x + y + 2
                  4.  Using the substitution z = x + y, solve the differential equation    =   .
                                                                          dx    x + y + 1
                                               dy   2x – y – 1
                  5.  Solve the differential equation    =    by using the substitution v = 2x – y.
                                               dx   2x – y + 3



                                                                                                       139






         04 STPM Math(T) T2.indd   139                                                                 28/01/2022   5:44 PM
   26   27   28   29   30   31   32   33   34   35   36