Page 5 - Pra U STPM 2022 Penggal 2 - Mathematics
P. 5

Mathematics Semester 2  STPM  Chapter 1 Limits and Continuity

                     Example 1

                  Evaluate                                                                                    1
                                                                        2
                            2
                  (a)   lim  (x  – x – 2)                    (b)   lim  x  + 2x – 3
                                                                        2
                      x → 1                                       x → 2  x  + x + 1
                Penerbitan Pelangi Sdn Bhd. All Rights Reserved.
                                                                        3
                                                                             2
                  (c)   lim  36 – x 2                        (d)   lim  x  – 2x  + 3x
                      x → 6  6 – x                                x → 0  x  – 2x
                                                                          2
                  Solution:           (a)   lim  (x  – x – 2) =    lim  x  –   lim  x –   lim  2
                                                2
                                                                2
                                           x → 1           x → 1   x → 1   x → 1
                                                         = 1  – 1 – 2
                                                            2
                                                         = –2
                                            Alternative Method
                                            Substitute x = 1,
                                                              2
                                                  2
                                             lim  (x  – x – 2)  = 1  – 1 – 2
                                            x → 1
                                                           = –2
                                                              2
                                                2
                                      (b)   lim  x  + 2x – 3   =   2  + 2(2) – 3
                                                 2
                                           x → 2  x  + x + 1  2  + 2 + 1
                                                               2
                                                          =  5
                                                            7
                                      (c)   x → 61 36 – x 2 2
                                            lim
                                                 6 – x
                                          The function f(x) =   36 – x 2  is not defined when x = 6
                                                            6 – x
                                          If  x ≠ 6, then   lim  36 – x 2   =   lim  (6 – x)(6 + x)
                                                      x → 6 6 – x   x → 6   6 – x
                                                                  =  lim   (6 + x)
                                                                    x → 6
                                                                  = 6 + 6
                                                                  = 12
                                          Note : We can take values of x as near as possible to 6, but not equal to 6.
                                                                       2
                                                       2
                                                  3
                                      (d)   x → 0 1  x  – 2x  + 3x 2	 =   x → 0 x(x  – 2x + 3)
                                                                 lim
                                            lim

                                                   x  – 2x
                                                                       x (x – 2)
                                                    2
                                                                       2
                                                                 lim

                                                              =  x → 0 1 x  – 2x + 3 2 , x ≠ 0
                                                                         x – 2

                                                              =  0 – 0 + 3
                                                                  0 – 2
                                                              = –  3
                                                                  2
                     Example 2
                  Determine whether the limit exists in each of the following cases.
                                           2 + e      , x , 1
                                         
                  (a)   lim   f(x) where f(x) = 	  x
                        x → 1             1 + e – x , x . 1

                                                2
                                           (x – 2)  , x < 2
                  (b)   lim   f(x) where f(x) =   2
                        x → 2             1 –      , x . 2
                                              x
                                                                                                        3



         01 STPM Math(T) T2.indd   3                                                                   28/01/2022   5:30 PM
   1   2   3   4   5   6   7   8   9   10