Page 6 - Pra U STPM 2022 Penggal 2 - Mathematics
P. 6

Mathematics Semester 2  STPM  Chapter 1 Limits and Continuity

               Solution:            (a)  lim  –  f(x)  =   lim  – (2 + e )
                                                             x
                                        x → 1      x → 1
                                                 = 2 + e
          1                              lim        lim
                                        x → 1 +  f(x)  =  x → 1 _ (1 + e – x)
                                                 = 1 + e – 1
                Penerbitan Pelangi Sdn Bhd. All Rights Reserved.
                                                 = e
                                        Since  lim  –  f(x) ≠   lim  +  f(x),    lim   f(x) does not exist.
                                             x → 1      x → 1     x → 1
                                    (b)   lim  –  f(x)  =   lim  – (x – 2) 2
                                        x → 2      x → 2
                                                 = (2 – 2) 2
                                                 = 0
                                                       +  1 –
                                                    lim
                                         lim  +  f(x) =  x → 2 1  2 2
                                        x → 2                x
                                                 = 1 –   2 2
                                                 = 0
                                        Since  lim  –  f(x) =   lim  + f(x) = 0,    lim   f(x) exist.
                                             x → 2      x → 2        x → 2






              Limits at infinity

                       +
              For n  Z  ,   x → ∞ x 1 n  = 0.

                           lim
                  Example 3

               Evaluate
               (a)   lim     2 + x
                    x → ∞  3x + 1
                           2
               (b)   lim    3n  – n + 1
                            2
                    n → ∞  n  + 1
               Solution:            We cannot substitute x = ∞ as   ∞  is undefined.
                                                              ∞
                                    Instead, both the numerator and the denominator are divided by the highest power
                                    of x.                     2
                                                                 1 2
                                                        lim

                                    (a)   lim     2 + x    =  x → ∞1  x  + 1
                                        x → ∞  3x + 1        3 +   x
                                                    =  1
                                                       3
                                                                        1 2
                                                                      n
                                                2
                                                        2
                                                             lim


                                         lim
                                    (b)   n → ∞1 3n  – n + 1   =  n → ∞1  3 –   1   +  n 1 2
                                                n  + 1
                                                 2
                                                                    1 +
                                    		                    = 3           n 2
                4





         01 STPM Math(T) T2.indd   4                                                                   28/01/2022   5:30 PM
   1   2   3   4   5   6   7   8   9   10   11