Page 31 - The Effect of Hydrogen and Hydrides - ebook first test
P. 31

Table 3-2:   Calculation of critical nucleation parameters and nucleation rate at zero internal and externally applied
                             stress. Case of finite energy barrier model of solvus hysteresis - equilibrium solvus assumed to be given
                             midway between TSSD and TSSP2 solvi [Pan et al., 1996].

                   Critical nucleus dimensions
                                                     Note: Axis of rotation of ellipsoid is about x1:
                                                            3
                   Values of some     Tn(K) = 558.1     VZr(m /(mol Zr)) =   e11 = 0.172    rH(H/Zr) = 1.48
                   parameters                           1.40110
                                                               -5
                                                                       4
                                       = 0.3121        (MPa) = 3.031 10    e22 = 0       β  = 1.5
                                                                                             δ
                                      E(MPa) = 7.9510    ‘kB(J/(K atom)) =   e33 = 0       cH (rH/β ) =
                                                                                              δ
                                                    4
                                                                                                  δ
                                                                -23
                                                        1.380 10                           0.98667
                                                                                              o
                                      c(J/m ) = 0.0038   Ao(g/mol) = 6.025   Z = 0.1       cH (at. fn) =
                                           2
                                                        10                                 0.008969331
                                                           23
                                           2
                                      p(J/m )= c+2i=   R(J/(K∙mol)) = 8.3144   cH (wppm) = 100   d(m) = 4.5010
                                                                                                        -10
                                                                            o
                                      0.0114
                   TSS equations-     H(TSSD; J/mol H)   Nnucl(sites/m ) =
                                                                 3
                   Pan et al; constant A:   = 31000     4.3010
                                                              22
                                      H(TSSP1; J/mol H)  Heter.nucl.red.factor =
                                      = 27704           110
                                                            -6
                                      H(TSSP2; J/mol H)
                                      = 28942
                                      A(wppm) = 3.9210
                                                     4
                   Solvus temperatures(at  TD(K) = 624.5   TD(C) = 351.5   DH(m s ) = 1.1410
                                                                                         8
                                                                              2 -1
                   given CH (wppm)):
                         0
                                      TP1(K) = 558.1    TP1(C) = 285.1    d(m) = 4.5010
                                                                                      8
                                      TP2(K) = 583.1    TP2(C) = 310.1
                   Estimated equilibrium   Teq(K) = 603.4   H(Teq; J/mol H) =
                   solvus values:                       29953
                                      Teq(C) = 330.4   cH s, eq (wppm) = 49.2
                   Chemical energy:   g , nucl (chem., J/m )
                                                    3
                                      = -2.321 10
                                                8
                   Strain energy reduction factor: 1
                   Critical nucleus dimensions when  depends only on the ratio of surface energies:



























                                   Copyright © Advanced Nuclear Technology International Europe AB, ANT International, 2019.
   26   27   28   29   30   31   32   33   34   35   36