Page 65 - T-I JOURNAL19-3
P. 65
IONO-ELASTOMERS FOR WEARABLE ELECTRONICS 625
18. Li X, Zhang R, Yu W, Wang K, Wei J, Wu D, Cao copolymers: self-assembly and applications. Buf-
A, Li Z, Cheng Y, Zheng Q, Ruoff RS, Zhu H. falo (NY): Elsevier; 2000.
Stretchable and highly sensitive graphene-on- 30. Evans DF, Yamauchi A, Roman R, Casassa EZ.
polymer strain sensors. Sci Rep-UK. 2012;2:870. Micelle formation in ethylammonium nitrate,
19. Li C, Cui Y-L, Tian G-L, Shu Y, Wang X-F, Tian a low-melting fused salt. J Colloid Interf Sci.
H, Yang Y, Wei F, Ren T-L. Flexible CNT-ar- 1982;88:89–96.
ray double helices strain sensor with high 31. Xie R, López-Barrón CR, Wagner NJ. Self-as-
stretchability for motion capture. Sci Rep-UK. sembly of block copolymers in ionic liquids.
2015;5:15554. In: Shiflett MB, Scurto AM, editors. ionic liq-
20. Liu X, Tang C, Du X, Xiong S, Xi S, Liu Y, Shen uids: current state and future directions, ACS
X, Zheng Q, Wang Z, Wu Y, Horner A, Kim J-K. Symposium Series 1250. Oxford (UK): Oxford
A highly sensitive graphene woven fabric strain University Press; 2017. p. 83–142.
sensor for wearable wireless musical instrument. 32. Welton T. Room-temperature ionic liquids.
Mater Horiz. 2017;27:634–640. solvents for synthesis and catalysis. Chem Rev.
21. Boland CS, Khan U, Backes C, O’Neill A, 1999;99:2071–2083.
McCauley J, Duane S, Shanker R, Liu Y, Jurewicz 33. Wilkes JS. A short history of ionic liquids—from
I, Dalton AB, Coleman JN. Sensitive, high- molten salts to neoteric solvents. Green Chem.
strain, high-rate bodily motion sensors based 2002;4:73–80.
on graphene-rubber composites. ACS Nano. 34. Greaves TL, Drummond CJ. Ionic liquids as
2014;8:8819–8830. amphiphile self-assembly media. Chem Soc Rev.
22. Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, 2008;37:1709–1726.
Zhang G. Super-elastic graphene ripples for flexi- 35. López-Barrón CR, Chen R, Wagner NJ, Bel-
ble strain sensors. ACS Nano. 2011;5:3645–3650. tramo PJ. Self-assembly of Pluronic F127
23. Lipomi DJ, Vosgueritchian M, Tee BC-K, Hell- diacrylate in ethylammonium nitrate: struc-
strom SL, Lee J a, Fox CH, Bao Z. Skin-like ture, rheology, and ionic conductivity before
pressure and strain sensors based on transparent and after photo-cross-linking. Macromolecules.
elastic films of carbon nanotubes. Nat Nanotech- 2016;49:5179–5189.
nol. 2011;6:788–92. 36. López-Barrón CR, Chen R, Wagner NJ.
24. Mattmann C, Clemens F, Tröster G. Sen- Ultrastretchable iono-elastomers with mech-
sor for measuring strain in textile. Sensors. anoelectrical response. ACS Macro Lett.
2008;8:3719–3732. 2016;5:1332–1338.
25. Bae SH, Lee Y, Sharma BK, Lee HJ, Kim JH, Ahn 37. López-Barrón CR, Chen R, Wagner NJ, inven-
JH. Graphene-based transparent strain sensor. tors; University of Delaware, assignee. 2016.
Carbon. 2013;51:236–242. Cross-linked ionoelastomers with outstanding
26. Amjadi M, Yoon YJ, Park I. Ultra-stretchable tensile responses and high ion conductivity. U.S.
and skin-mountable strain sensors using carbon Patent Application 62/393,133. U.S. 2016 Sep 12.
nanotubes–ecoflex nanocomposites. Nanotech- 38. López-Barrón CR, Chen R, Wagner NJ.
nology. 2015;26:375501. 2017, inventors; University of Delaware,
27. Alexandridis P, Alan Hatton T. Poly(ethylene assignee. Stretchable iono-elastomers with
oxide)-poly(propylene oxide)-poly(ethylene mechano-electrical response, devices incorpo-
oxide) block copolymer surfactants in aqueous rating iono-elastomers, and methods of making
solutions and at interfaces: thermodynamics, thereof. International Patent Application PCT/
structure, dynamics, and modeling. Colloids US17/26621. 2017 Apr 7.
Surfaces A. 1995;96:1–46. 39. Ghaffarzadeh K, Harry Zervos. Conductive ink
28. Riess G. Micellization of block copolymers. Prog markets 2015-2025: forecasts, technologies, play-
Polym Sci. 2003;28:1107–1170. ers. Cambridge (UK): IDTechEx; 2015.
29. Lindman B, Alexandridis P. Amphiphilic block 40. Statista. Smart fabrics/textile global market

