Page 161 - Engineering Mathematics Workbook_Final
P. 161

Complex Variables

                                                                    COMPLEX INTEGRATION USING
                                                                          CAUCHY RESDUE THEOREM

                                                                                   i
                                                                  169.  Let  =   e , then residue of
                                                                                   10
                                                                                     1
                                                                          f  ( ) z =      at  z =   is
                                                                                   +
                                                                                  1 z  10
                   The value of I is
                                                                                                  
                       1                     2                           (a) −                 (b)
                   (a)  i                (b)  i                                10                 10
                       2                     3
                                                                                i −               i   
                       3                     4                           (c)                   (d)
                   (c)  i                (d)  i                                5                    5
                       4                     5
                                                                                                  sin z
                                                                  170.  The residue of  ( ) z =         at z = 0
                                                                                         f
                          [GATE-2017 EE SESSION-I]                                                  8
                                                                                                   z
              COMPLEX INTEGRATION USING                                  is
                          CAUCHY INTEGRAL                                                            1
                                THEOREM                                  (a) 0                 (b) −
                                                                                                     7!
            168.  Consider likely applicability of
                   Cauchy’s integral theorem to evaluate                 (c)   1               (d) none

                   the following integral counter                            7!
                   clockwise around the unit circle C,                                                  [GATE]
                   I =    sec zdz z  being a complex
                                   ,
                                                                                            −
                         c                                        171.  If  ( ) z =  c +  c z , then
                                                                                             1
                                                                            f
                   variable. The of I will be                                        0    1
                                                                            1+   f  ( ) z  dz  is given by
                   (a) I = 0 singularities  set = 
                                                                         unit     z
                                                                         circle
                   (b) I = 0 singularities set
                                                                                                         +
                         2n + 1                                      (a) 2 C               (b) 2 (1 C    )
                                                                              
                   =            , n = 0,1,2....                                1                         0
                     
                          2                     
                                                                                                    
                                                                                                          +
                                                                              
                                                                         (c) 2 jC              (d) 2 j (1 C   0  )
                                                                                   1
                           
                   (c)  I =   , singularities set                                            [GATE-2009-EC]
                           2
                      n
                   =      ; n =  0,1,2....                      172.  If C is a circle of radius r with centre
                                                                         z , in the complex z-plane and if n is
                                                                           0
                   (d) None of the above

                                 [GATE-2005-CE]




                                                            159
   156   157   158   159   160   161   162   163   164   165   166