Page 159 - Engineering Mathematics Workbook_Final
P. 159

Complex Variables

                                                                                  1                      − 1    px   
                                                                                        (
                                                                                          2
                                                                          f  ( ) z =  log x +  y 2 ) +  i tan        
                                                                                  2                          y  
                                                                          is analytic is ______.      [JNU]
                   (c)
                                                                  159.  If  ( ) (    x +  ay 2 )  + ibxy  is
                                                                            f z =
                                                                                       2
                                                                         complex analytic function of

                                                                         z =  x iy , where i =    −  1, then
                                                                               +

                                                                         (a) a = − 1, b = − 1

                                                                         (b) a = − 1, b =
                                                                                         2
                   (d)
                                                                         (c) a = 1, b = 2


                                                                         (d) a = 2, b = 2      [GATE 2017]

                                                                                   )
                                                                                                 )
                                                                           
                                                                                         
                                                                  160.  If  ( , x y  and  ( , x y  are functions
                                       [GATE-2011-EE]
                                                                         with continuous second derivatives,
                                                                                                 )
            157.  Let S be the set of points in the                      then  ( ,x y  ) i  +  ( ,x y  can be
                   complex plane corresponding to the                    expressed as an analytic function of
                                                      
                   unit circle. That is  S =        : z z =  1 .      x iy i = −     1  when
                                                                                (
                                                                                         )
                                                      
                                                      
                                                                           +
                   Consider the function f(z) = zz’where
                   z’ denotes the complex conjugate of                                     
                   z. The f(z) maps S to which one of                    (a)     =      ,     =
                   the following in the complex plane                         x     x   y     y
                   (a) unit circle                                       (b)    =       =   
                                                                                        ,
                                                                              y     x   x      y
                   (b) horizontal axis line segment from
                   origin to (1, 0)                                           2    2      2     2 
                                                                         (c)    2  +   2  =    2  +    2  = 1
                   (c) the point (1, 0)                                       x     y      x      y


                   (d) the entire horizontal axis                              +    =    +     =
                                                                         (d)    x   y     x     y    0
                                 [GATE-EE-SET 1]
                                                                                             [GATE-2007-CE]
               CAUCHY-REIMANN EQUATIONS
                                                                  161.  Consider the complex valued
            158.  The value of ‘P’ such that the                         function  ( ) 2f z =  z +  3  3
                   function                                                                       b z  where z
                                                                         is a complex variable. The value of b



                                                            157
   154   155   156   157   158   159   160   161   162   163   164