Page 163 - Engineering Mathematics Workbook_Final
P. 163
Complex Variables
179. What is the residue of the function 182. The contour integral e dz with C
1
z
−
1 e 2z at its pole? C
z 4 as the counter clock wise unit circle
in the z-plane is equal to
4 4
(a) (b) −
3 3 (a) 0 (b) 2
2 2 1
(c) − (d) (c) 2 − (d)
3 3
[GATE-2011 (IN)]
[ESE 2018 (COMMON PAPER)]
183. In the Laurent expansion of
LAURENT EXPANSION 1
f ( ) z = valid in the
180. The Taylor series expansion of f(z) = (z − 1 )(z − ) 2
sin z about z = is region 1 z 2 , the coefficient of
4
1
2 3 is
z − z − z 2
1 4 4
(a) 1+ z − + + + .....
2 4 2! 3! 1
(a) 0 (b)
2
2 3
z − z − (c) 1 (d) -1
1 4 4
(b) 1+ z − − − + .....
2 4 2! 3! [ESE 2018 (COMMON PAPER)]
1
184. The coefficient of in the laurent
z 3 z 5 z
(c) z − + − .......
3! 5! z
series expansion of log valid
(d) none [GATE] z − 1
in z 1 is _____ [GATE]
sin z
181. For the function of a complex
z 3 185. In Laurent series expansion of
variable z, the point z = 0 is 1 1
f ( ) z = − valid in the
(a) a pole of order 3 z − 1 z − 2
1
2
(b) a pole of order 2 region z , the coefficient of
z 2
(c) a pole of order 1 is _________. [GATE]
(d) not a singularity
[GATE-2007 (IN)]
161

