Page 163 - Engineering Mathematics Workbook_Final
P. 163

Complex Variables

            179.  What is the residue of the function             182.  The contour integral     e dz  with C
                                                                                                   1
                                                                                                    z
                     −
                   1 e  2z   at its pole?                                                       C
                      z 4                                                as the counter clock wise unit circle
                                                                         in the z-plane is equal to
                       4                       4
                   (a)                   (b) −
                       3                       3                         (a) 0                 (b) 2

                         2                   2                                      1
                   (c) −                 (d)                             (c) 2 −              (d) 
                         3                   3
                                                                                            [GATE-2011 (IN)]
                      [ESE 2018 (COMMON PAPER)]
                                                                  183.  In the Laurent expansion of
                     LAURENT EXPANSION                                                   1
                                                                          f  ( ) z =              valid in the
            180.  The Taylor series expansion of f(z) =                           (z −  1 )(z −  ) 2
                                   
                   sin z about  z =    is                                region 1   z   2 , the coefficient of
                                    4
                                                                          1
                                      2        3                        is
                                z −        z −                  z 2
                1              4       4    
            (a)    1+        z −         +     +      + .....   
                 2       4       2!        3!                                                  1
                                                                       (a) 0                 (b)
                                                                                               2

                                     2       3  
                               z −        z −                  (c) 1                 (d) -1
                 1              4         4     
            (b)     1+        z −         −  −  + .....   
                 2       4     2!        3!                             [ESE 2018 (COMMON PAPER)]
                                                    
                                                        
                                                                                             1
                                                                  184.  The coefficient of      in the laurent
                    z 3   z 5                                                                z
            (c)  z −   +     − .......
                    3!    5!                                                                        z   
                                                                         series expansion of log               valid
            (d) none                            [GATE]                                              z − 1 
                                                                         in  z  1 is _____           [GATE]
                                     sin z
            181.  For the function          of a complex
                                      z 3                         185.  In Laurent series expansion of

                   variable z, the point z = 0 is                                   1       1
                                                                          f  ( ) z =   −        valid in the
                   (a) a pole of order 3                                          z −  1  z −  2
                                                                                                            1
                                                                                      2
                   (b) a pole of order 2                                 region  z  , the coefficient of
                                                                                                            z 2
                   (c) a pole of order 1                                 is _________.                [GATE]

                   (d) not a singularity


                                      [GATE-2007 (IN)]



                                                            161
   158   159   160   161   162   163   164   165   166   167   168