Page 241 - Engineering Mathematics Workbook_Final
P. 241
Fourier Series
1. A function with a period is shown (d) 4 (1 sin n
)
+
below. The Fourier series for the n= 1 2 n 2
function is given by
[GATE-2003]
3. The period of the signal
x t = ( ) 8sin 0.8 t + is
4
(a) 0.4 s (b) 0.8 s
(c) 1.25 s (d) 2.5 s
[GATE-2010]
1 2 n
(a) ( ) x = + sin cosnx
f
2 n= 1 n 2 4. The Fourier series of the function,
f x = − x 0
( ) 0 ,
(b) ( ) x = 2 sin n cosnx = x , 0 x −
f
n= 1 n 2
1 2 n in the interval − , is
(c) ( ) x = + sin sin nx
f
2 n= 1 n 2 2 cos x cos3x
f ( ) x = 4 + 1 2 + 3 2 + .... +
(d) ( ) x = 2 sin n sin nx
f
n= 1 n 2 sin x sin 2x sin3x
+ + + ......
[GATE-2000 (CE)] 1 2 3
2. The Fourier series expansion of a The convergence of the above
symmetric and even function, ( ) x Fourier series at x = 0 gives
f
where 1 2
(a) =
1 2 / , − 0 n= 1 n 2 6
+
x
x
f ( ) x =
1 2 / , 0 − n− 1 2
−
x
x
(b) ( ) 1 2 = 12
n
)
+
(a) 4 2 (1 cosn n= 1
2
n= 1 n 1 2
(c) (2n − ) 1 = 8
(b) 4 (1 cosn− ) n= 1
n= 1 2 n 2 ( ) 1− n+ 1
(c) 4 2 (1 sin n− ) (d) (2n − ) 1 = 4
n=
1
2
n= 1 n
[GATE-2016-CE-SET-2; 1 MARK]
239

