Page 241 - Engineering Mathematics Workbook_Final
P. 241

Fourier Series

                                              
            1.     A function with a period    is shown                 (d)    4   (1 sin n
                                                                              
                                                                                               )
                                                                                       +
                   below. The Fourier series for the                         n= 1 2 n 2
                   function is given by
                                                                                                 [GATE-2003]
                                                                  3.     The period of the signal
                                                                                             
                                                                         x t =  ( ) 8sin 0.8 t  +              is
                                                                                            4 


                                                                         (a) 0.4 s            (b) 0.8 s

                                                                         (c) 1.25 s            (d) 2.5 s

                                                                                                 [GATE-2010]
                               1     2        n   
                   (a)  ( ) x =  +     sin         cosnx
                       f
                               2  n= 1 n    2                  4.     The Fourier series of the function,

                                                                          f x =         −   x   0
                                                                           ( ) 0 ,
                               
                   (b)  ( ) x =   2  sin       n          cosnx               =   x , 0 x  −   
                       f
                               n= 1 n    2  

                               1     2        n                    in the interval        −  ,   is
                   (c)  ( ) x =  +     sin         sin nx
                       f
                               2  n= 1 n    2                                    2 cos x    cos3x     
                                                                                       
                                                                                                          
                                                                          f  ( ) x =  4    +      1 2  +  3 2  + .... +
                                                                                                          
                                                                                                          
                               
                   (d)  ( ) x =   2  sin       n          sin nx                               
                       f
                               n= 1 n    2                              sin x  sin 2x  sin3x     
                                                                                                     
                                                                              +       +       + ......
                                                                                                     
                                      [GATE-2000 (CE)]                       1    2       3          
            2.     The Fourier series expansion of a                            The convergence of the above
                   symmetric and even function,  ( ) x                   Fourier series at x = 0 gives
                                                   f
                   where                                                       1    2
                                                                         (a)     =
                            1 2 / , −        0                            n= 1 n 2  6
                                   
                             +
                                         
                                             x
                                x
                           
                    f  ( ) x = 
                            1 2 / ,    0                                    −   n− 1   2
                                   
                             −
                                            x 
                                x
                           
                                                                         (b)   ( ) 1 2  =  12
                                                                                  n
                        
                                         )
                                 +
                   (a)    4  2  (1 cosn                                    n= 1
                           2
                       n= 1 n                                                   1       2
                                                                         (c)   (2n −  ) 1  =  8
                        
                   (b)    4   (1 cosn−  )                                  n= 1
                       n= 1 2 n 2                                              ( ) 1−  n+ 1  
                        
                   (c)    4  2  (1 sin n−  )                           (d)   (2n −  ) 1  =  4
                                                                             n=
                                                                              1
                           2
                       n= 1  n
                                                                         [GATE-2016-CE-SET-2; 1 MARK]

                                                            239
   236   237   238   239   240   241   242   243   244   245   246