Page 238 - Engineering Mathematics Workbook_Final
P. 238
Laplace Transforms
(a) 0, 2 respectively s + 1
2
(a)
(b) 2, 0 respectively s + 3
(c) 0, 1 respectively 1
(b)
(d) 2/5, 0 respectively s + 3
[GATE-1995-EC] (c) s + 2 1 + s + 2
2
(s + 3 )(s + ) 2 s + 1
( ) =
L
51. If f t then the value
s + 2 (d) None of these
2
of lim f ( ) .............t =
t→ [GATE-2000-EC]
(a) can not be determined 54. A delayed unit step function is
0, for t a
−
(b) zero defined as ( u t a = ) 1, for t a .
(c) unity Its Laplace transform is
(d) infinite [GATE-1998-EC] (a) a e − as (b) e − as
3s + 1 s
52. Given L − 1 . If e as e as
s + 4s + (K − ) 3 s (c) s (d) a
3
2
lim f ( ) 1t = , then the value of K is
t→
55. The integral t − 6sin ( ) t dt
− 6
(a) 1 (b) 2
evaluates to
(c) 3 (d) 4 (a) 6 (b) 3
[GATE-2010-EE] (c) 1.5 (d) 0
s + 2 [GATE-10 (IN)]
( ) =
L
53. If f t ,
s + 1 56. Given two continuous time signal
2
t −
( ) e=
x ( ) t = e and y t − 2t which
s + 1
2
( ) =
L g t exists for t > 0 then the convolution
(s + 3 )(s + ) 2
z(t) = x(t) * y(t) is
( ) ( g t T dT−
h ( ) t = t f T ) then t − − 2t − 2t
0 (a) e − e (b) e
L{h(t)} is ….. t − t − −
(c) e (d) e + e 3t
[GATE-2011]
236

