Page 237 - Engineering Mathematics Workbook_Final
P. 237

Laplace Transforms

            45.    The inverse Laplace transform of the                        2                    4
                                  s + 5                                  (a)   s + 1           (b)   s + 1
                   function                  is ….
                             (s +  1 )(s +  ) 3
                                                                               4                     2
                                                                         (c)                   (d)
                                                                                                    4
                                                                              2
                           t −
                                                t −
                   (a) 2e −   e −  3t     (b) 2e +  e −  3t                  s +  1                s + 1
                                               t −
                         t −
                   (c) e −   2e −  3t     (d) e +  2e −  3t                                 [GATE-2013-ME]
                                                                        LAPLACE TRANSFORM OF
                                       [GATE-1996-EC]
                                                                              PERIODIC FUNCTIONS
            46.    The  Laplace  transform  of  a  function

                              1                                   49.    The  Laplace  Transform  of  the
                   f(t) is          . The function f(t) is               periodic function f(t) described by the
                          s 2 (s +  ) 1                                  curve below


                            +
                                                 +
                                                      t −
                                t −
                   (a) t −  1 e          (b) t +  1 e                      sin , t if  (2n −  ) 1   t  2n    (n = 1,2,3,... )
                                                                         
                               t −
                                                                         
                       −
                          +
                                                   t
                   (c)  1 e              (d) 2t +  e               f  ( ) t =  0 otherwise
                                                                         
                 APPLICATION OF LAPLACE
               TRANSFORM IN DIFFERENTIAL
                            EQUATION

            47.    Solve  the  initial  value  problem                                     [GATE-1993 (ME)]
                     2
                    d y  −  4 dy  +  3y =  0 with  y = 3 and
                    dx 2     dx                                   INITIAL & FINAL VALUE THEOREM
                    dy  = 7  at  x  =  0  using  the  Laplace                                    5s +  2  23s +  6

                    dx                                            50.    If    L ( ) f =  F ( ) s =  2
                   transform technique.                                                           ( s s +  2s +  ) 2
                                                                                     ( )
                                                                         then lim f t =    _____ .
                                      [GATE-1997-ME]                              t→ 


            48.    The  function  f(t)  satisfies  the                                         2
                                                                         If        F ( ) s =                then
                                               2
                                             d f                                           s (1 s+  )
                   differential  equation         +  f =  0
                                             dt 2                        lim f  ( ) t =  _____   where  L(f(t))  =
                   and the auxiliary conditions, f(0) = 0,                   t→ 
                    df  ( ) 0 = . The Laplace transform of               F(s).
                             4
                    dt                                                   If   f c          ( 2 s +  ) 1
                                                                            L
                   f(t) is given by                                              ( ) =  s +  2  2s +  1   then  f(0*)
                                                                              f
                                                                         and  ( )   given by ….







                                                            235
   232   233   234   235   236   237   238   239   240   241   242