Page 88 - Engineering Mathematics Workbook_Final
P. 88

Differential Equations & Partial Differential Equations

                   (b) 2x +  3  6xy +  3y =  2  c                 23.    One of the integrating factors of the
                                                                         differential equation
                                                                                             2
                                     2
                                                                            2
                                         c
                   (c) 2x +  2xy +  y =                                  ( y −  3xy ) dx + ( x −  xy ) dy =  0 is
                                     2
                         2
                                         c
                   (d)  x +  2xy +  y =                                         1                    1
                                                                         (a)    2  2 )         (b)   2
                                                                                                    x
                                         [JAM CA 2011]                       ( x y                 ( ) y
            20.    The general solution of the                                 1                    1
                                           2
                                         d y         dy     2        (c)  ( ) 2            (d)  ( )
                                                                                                    xy
                                                                              xy
                   differential equation      =        
                                          dx 2     dx 
                   is                                                                         [JAM MA 2007]
                         =
                                      y
                   (a)  x c e − y  +  c e                         24.    Consider the differential equation
                                    2
                            1
                                                                                                ( ) dy =
                                                                         2cos y   2    −    sin y  2       0
                                                                               ( ) dx xy
                         =
                   (b)  x c e +  1  y  c                                 (a) e  is an integrating factor
                                                                              x
                                   2
                         =
                                                                              −
                   (c)  x c e −  y  +  c                                 (b) e  is an integrating factor
                                                                               x
                                    2
                            1
                         =
                   (d)  x c e +  1  y  c y   [JAM CA 2011]               (c) 3x is an integrating factor
                                   2
                                                                              3
            21.    An integrating factor of                              (d)  x  is an integrating factor
                     dy
                   x     + (3x +  ) 1 y =  xe − 2x  is                                        [JAM MA 2009]
                     dx
                                                                  25.    Consider the differential equation
                                                 x
                         3x
                   (a)  xe               (b) 3xe                          dy  =  ay by , where  , a b   and
                                                                                  −
                                                                                       2
                                                                                                        0
                                                                          dx
                                              3 x
                          x
                   (c)  xe               (d)  x e                         y ( ) 0 =  y . As  x → +, the solution
                                                                                   0
                                        [JAM MA 2005]                     y ( ) x  tends to
            22.    If k is a constant such that                          (a) 0                 (b) a/b
                              (x−  ) 1  2
                       +
                   xy k =    e  2   satisfies the                        (c) b/a               (d)  y
                                                                                                    0
                   differential equation
                     dy                                                                       [JAM MA 2010]
                              2
                                 x
                   x     = ( x − −    ) 1 y + (x −  ) 1 , then
                     dx                                           26.    Consider the differential equation
                   k is equal to                                         (x + +     ) 1 dx + (2x +  2y +  ) 1 dy = .
                                                                                                              0
                                                                               y
                   (a) 1                 (b) 0                           Which of the following statements is
                                                                         true?
                   (c) -1                (d) -2
                                                                         (a) The differential equation is linear
                                        [JAM MA 2007]
                                                                         (b) The differential equation is exact



                                                             86
   83   84   85   86   87   88   89   90   91   92   93