Page 90 - Engineering Mathematics Workbook_Final
P. 90

Differential Equations & Partial Differential Equations
                                                                               =
                                        )
                                 −
                   (b)  y =  2  ( 2 1 cos x                              (b) r a   cos
                                                                                             )
                                                                                     +
                                           0
                   (c)  ( y y +  ) 4 + cos x =                           (c) r =  a (1 cos
                                                                                             )
                                                                                     +
                                               )
                                        −
                   (d)  ( y y +  ) 4 =  ( 2 1 cos x                      (d) r =  a (1 sin
                                                                  36.    The solution of the differential
                                         [JAM GP 2010]
                                                                         equation  y +  11  4y =  0  subject to
            33.    The orthogonal trajectories of the                     y      1 y  1      2
                   curves  y =  3x + +  are                                ( ) 0 = ,  ( ) 0 =  is
                            2
                                   3
                                       x c
                   (a) 2tan 3x +  − 1  3ln y =  k                        (a) sin2x +  1
                                                                         (b) cos2x +  2x
                   (b) 3tan 3x +  − 1  2ln y =  k
                                                                         (c) sin2x +  cos2x
                   (c) 3tan 3x −  − 1  2ln y =  k
                                                                         (d) sin2x −  cos2x  [JAM CA 2005]

                   (d) 3ln x −  2tan 3y =  − 1  k                 37.    A particular solution of the

                                                                         differential equation
                                         [JAM CA 2006]
                                                                                    2
                                                                             4
                                                                         ( D +  2D −     ) 3 y e  is
                                                                                            =
                                                                                                x
            34.    Orthogonal trajectories of the family
                                                                                                     x
                                                                                      x
                                     2
                                          2
                   of curves (x −   ) 1 +  y +  2ax =  are               (a) (x +  ) 1 e       (b)  xe
                                                     0
                   the solution of the differential                          xe x                  xe x
                   equation                                              (c)   4               (d)   8
                                          dy
                              2
                                   +
                        2
                   (a)  x −  y − 1 2xy       =  0                                              [JAM CA 2005]
                                          dx                      38.    A particular solution of the
                                          dy                             differential equation
                              2
                         2
                                 1 2xy
                   (b)  x +  y − +           =  0
                                                                                          1
                                                                                   11
                                                                                              y
                                          dx                              y 111  − 3y + 3y − =    e x  cos2x  is
                                          dx                                   1                   1
                                   −
                              2
                        2
                   (c)  x −  y − 1 2xy       =  0                        (a) −   e x  sin2x    (b)  e x sin2x
                                          dy                                   8                   8
                                          dx                                 1  x                   x
                                   −
                              2
                         2
                   (d)  x +  y + 1 2xy       =  0                        (c)  e  cos2x         (d) e  sin2x
                                                                             8
                                          dy
                                                                                               [JAM CA 2005]
                                         [JAM CA 2008]
            35.    The orthogonal trajectory of the               39.    If  ( ) 3y x =  1 1  y 1 ( ) 4x +  y 2 ( ) x  and
                                                                                                 ( )
                                             )
                   cardioid r =  a (1 cos , a being the                  y x =  1 2 ( ) 4y x +  1 ( ) 3y x , then
                                     +
                                                                                                2
                   parameter, is                                          y 1 ( ) x  is
                   (a) r =  a (1 cos−  )                                       x      7x
                                                                         (a) c e +  c e
                                                                              1      2

                                                             88
   85   86   87   88   89   90   91   92   93   94   95