Page 29 - Trigonometry
P. 29

Example 9:

        Find the solutions to equation between 0 ≤    ≤ 2  ,

                             sin(2  ) − cos(  )
                                                       = 0
                          cos(2  ) + sin(  ) − 1


        Use the identities,

             sin(   +   ) = sin(  ) cos(  ) + cos(  ) sin(  )
        and

             cos(   +   ) = cos(  ) cos(  ) − sin(  ) sin(  )
        Then

               sin(2  ) = sin(  ) cos(  ) + cos(  ) sin(    )
                               = 2 sin(  ) cos(  )



                cos(2  ) = cos(  ) cos(  ) − sin(  ) sin(  )
                                     2
                                                   2
                             = cos (  ) − sin (  )

        Our equation becomes

                       2 sin(  ) cos(  ) − cos(  )
                                                              = 0
                                     2
                        2
                   cos (  ) − sin (  ) + sin(  ) − 1

                          cos(  ) [2 sin(  ) − 1]
                                                               = 0
                                                       2
                                   2
                  sin(  ) − sin (  ) −[1 − cos (  )]



                                          25
   24   25   26   27   28   29   30   31   32   33   34