Page 450 - Jolliffe I. Principal Component Analysis
P. 450
References
Aguilera, A.M., Guti´errez, R., Oca˜na, F.A. and Valderrama, M.J. (1995).
Computational approaches to estimation in the principal component
analysis of a stochastic process. Appl. Stoch. Models Data Anal., 11,
279–299.
Aguilera, A.M., Oca˜na, F.A. and Valderrama, M.J. (1997). An ap-
proximated principal component prediction model for continuous time
stochastic processes. Appl. Stoch. Models Data Anal., 13, 61–72.
Aguilera, A.M., Oca˜na, F.A. and Valderrama, M.J. (1999a). Forecasting
with unequally spaced data by a functional principal component analysis.
Test, 8, 233–253.
Aguilera, A.M., Oca˜na, F.A. and Valderrama, M.J. (1999b). Forecasting
time series by functional PCA. Discussion of several weighted approaches.
Computat. Statist., 14, 443–467.
Ahamad, B. (1967). An analysis of crimes by the method of principal
components. Appl. Statist., 16, 17–35.
Aires, F., Chedin, A. and Nadal, J.P. (2000). Independent component anal-
ysis of multivariate time series: Application to tropical SST variability.
J. Geophys. Res.—Atmos., 105 (D13), 17,437–17,455.
Aitchison, J. (1982). The statistical analysis of compositional data (with
discussion). J. R. Statist. Soc. B, 44, 139–177.
Aitchison, J. (1983). Principal component analysis of compositional data.
Biometrika, 70, 57–65.
Aitchison, J. (1986). The Statistical Analysis of Compositional Data.
London: Chapman and Hall.

