Page 455 - Jolliffe I. Principal Component Analysis
P. 455

References
                              420
                              Besse, P. (1992). PCA stability and choice of dimensionality. Stat. Prob.
                                Lett., 13, 405–410.
                              Besse, P.C. (1994a). Insight of a dreamed PCA. In SEUGI/CLUB SAS
                                Proceedings, 744–759.
                              Besse, P.C. (1994b). Models for multivariate data analysis. In COMPSTAT
                                94, eds. R. Dutter and W. Grossmann, 271–285. Heidelberg: Physica-
                                Verlag.
                              Besse, P.C., Cardot, H. and Ferraty, F. (1997). Simultaneous non-
                                parametric regressions of unbalanced longitudinal data. Computat.
                                Statist. Data Anal., 24, 255–270.
                              Besse, P.C., Cardot, H. and Stephenson, D.B. (2000). Autoregressive fore-
                                casting of some functional climatic variations. Scand. J. Statist., 27,
                                673–687.
                              Besse, P. and de Falguerolles, A. (1993). Application of resampling methods
                                to the choice of dimension in principal component analysis. In Computer
                                Intensive Methods in Statistics,eds.W.H¨ardle and L. Simar, 167–176.
                                Heidelberg: Physica-Verlag.
                              Besse, P.C. and Ferraty, F. (1995). A fixed effect curvilinear model.
                                Computat. Statist., 10, 339–351.
                              Besse, P. and Ferre, L. (1993). Sur l’usage de la validation crois´ee en analyse
                                en composantes principales. Rev. Statistique Appliqu´ee, 41, 71–76.
                              Besse, P. and Ramsay, J.O. (1986). Principal components analysis of
                                sampled functions. Psychometrika, 51, 285–311.
                              Bhargava, R.P. and Ishizuka, T. (1981). Selection of a subset of variables
                                from the viewpoint of variation—an alternative to principal component
                                analysis. In Proc. Indian Statist. Inst. Golden Jubilee Int. Conf. on
                                Statistics: Applications and New Directions, 33–44.
                              Bibby, J. (1980). Some effects of rounding optimal estimates. Sankhya B,
                                42, 165–178.
                              Bishop, C.M. (1995) Neural Networks for Pattern Recognition. Oxford:
                                Clarendon Press.
                              Bishop, C.M. (1999). Bayesian PCA. In Advances in Neural Information
                                Processing Systems, 11, eds. S.A. Solla, M.S. Kearns and D.A. Cohn,
                                382–388. Cambridge: MIT Press.
                              Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W. (1975). Discrete
                                Multivariate Analysis: Theory and Practice. Cambridge: MIT Press.
                              Blackith, R.E. and Reyment, R.A. (1971). Multivariate Morphometrics.
                                London: Academic Press.
                              Bloomfield, P. (1974). Linear transformations for multivariate binary data.
                                Biometrics, 30, 609–617.
                              Bloomfield, P. and Davis, J.M. (1994). Orthogonal rotation of complex
                                principal components. Int. J. Climatol., 14, 759–775.
                              B¨ohning, D. (1999). Computer-Assisted Analysis of Mixtures and Ap-
                                plications Meta-analysis, Disease Mapping and Others. Boca Raton:
                                Chapman and Hall/CRC.
   450   451   452   453   454   455   456   457   458   459   460