Page 451 - Jolliffe I. Principal Component Analysis
P. 451

References
                              416
                              Akaike, H. (1974). A new look at the statistical model identification. IEEE
                                Trans. Autom. Cont., 19, 716–723.
                              Aldenderfer, M.S. and Blashfield, R.K. (1984). Cluster Analysis. Beverly
                                Hills: Sage.
                              Aldrin, M. (2000). Multivariate prediction using softly shrunk reduced-rank
                                regression. Amer. Statistician, 54, 29–34.
                              Ali, A., Clarke, G.M. and Trustrum, K. (1985). Principal component anal-
                                ysis applied to some data from fruit nutrition experiments. Statistician,
                                34, 365–369.
                              Al-Kandari, N. (1998). Variable Selection and Interpretation in Principal
                                Component Analysis. Unpublished Ph.D. thesis, University of Aberdeen.
                              Al-Kandari, N.M. and Jolliffe, I.T. (2001). Variable selection and inter-
                                pretation of covariance principal components. Commun. Statist.—Simul.
                                Computat., 30, 339-354.
                              Allan, R., Chambers, D., Drosdowsky, W., Hendon, H., Latif, M., Nicholls,
                                N., Smith, I., Stone, R. and Tourre, Y. (2001). Is there an Indian Ocean
                                dipole, and is it independent of the El Ni˜no—Southern Oscillation?
                                CLIVAR Exchanges, 6, 18–22.
                              Allen, D.M. (1974). The relationship between variable selection and data
                                augmentation and a method for prediction. Technometrics, 16, 125–127.
                              Allen M.R. and Robertson, A.W. (1996). Distinguishing modulated oscilla-
                                tions from coloured noise in multivariate datasets. Climate Dynam., 12,
                                775–784.
                              Allen M.R. and Smith, L.A. (1996). Monte Carlo SSA: Detecting irregular
                                oscillations in the presence of colored noise. J. Climate, 9, 3373–3404.
                              Allen M.R. and Smith, L.A. (1997). Optimal filtering in singular spectrum
                                analysis. Phys. Lett. A, 234, 419–428.
                              Allen, M.R. and Tett, S.F.B. (1999). Checking for model consistency in
                                optimal fingerprinting. Climate Dynam., 15, 419–434.
                              Ambaum, M.H.P., Hoskins, B.J. and Stephenson, D.B. (2001). Arctic
                                oscillation or North Atlantic Oscillation. J. Climate, 14, 3495–3507.
                              Anderson, A.B., Basilevsky, A. and Hum, D.P.J. (1983). Missing data: A
                                review of the literature. In Handbook of Survey Research, eds. P.H. Rossi,
                                J.D. Wright and A.B. Anderson, 415–494.
                              Anderson, T.W. (1957). Maximum likelihood estimates for a multivari-
                                ate normal distribution when some observations are missing. J. Amer.
                                Statist. Assoc., 52, 200–203.
                              Anderson, T.W. (1963). Asymptotic theory for principal component
                                analysis. Ann. Math. Statist., 34, 122–148.
                              Anderson, T.W. (1984). Estimating linear statistical relationships. Ann.
                                Statist., 12, 1–45.
                              Andrews, D.F. (1972). Plots of high-dimensional data. Biometrics, 28, 125–
                                136.
   446   447   448   449   450   451   452   453   454   455   456