Page 72 - Human Environment Interface (3)
P. 72

Brain Barrier Integrity and Development in the Rat

 90. Knott GW, Dziegielewska KM, Habgood MD, Li ZS, Saunders NR (1997)                  103. Pollay M, Hisey B, Reynolds E, Tomkins P, Stevens FA, et al. (1985) Choroid
       Albumin transfer across the choroid plexus of South American opossum                    plexus Na+/K+-activated adenosine triphosphatase and cerebrospinal fluid
       (Monodelphis domestica). J Physiol 499 (1): 179–194.                                    formation. Neurosurgery 17(5): 768–772.

 91. Liddelow SA, Dziegielewska KM, Ek CJ, Johansson PA, Potter AM, et al.              104. Johanson CE, Duncan JA III, Klinge PA, Brinker T, Stopa EG, et al. (2008)
       (2009) Cellular transfer of macromolecules across the developing choroid                Multiplicity of cerebrospinal fluid functions: new challenges in health and
       plexus of Monodelphis domestica. Eur J Neurosci 29(2): 253–266.                         disease. CSF Res 5: 10.

 92. Liddelow SA, Dziegielewska KM, VandeBerg JL, Noor NM, Potter AM, et al.            105. Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT (2005) Reduced
       (2011a) Modification of protein transfer across blood/cerebrospinal fluid               cerebrospinal fluid production and intracranial pressure in mice lacking
       barrier in response to altered plasma protein composition during development.           choroid plexus water channel aquaporin-1. FASEB J 19(1): 76–78.
       Eur J Neurosci 33(3): 391–400.
                                                                                        106. Brian OK, Tom P, Wang D (2010) Aquaporins: relevance to cerebrospinal
 93. Liddelow SA, Dziegielewska KM, Møllga˚rd K, Phoenix TN, Temple S, et al.                  fluid physiology and therapeutic potential in hydrocephalus. CSF Res 7: 15.
       (2011b) SPARC/osteonectin, an endogenous mechanism for targeting albumin
       to the blood-cerebrospinal fluid interface during brain development.             107. Praetorius J, Nejsum LN, Nielsen S (2004) A SCL4A10 gene product maps
       Eur J Neurosci 34(7): 1062–1073.                                                        selectively to the basolateral plasma membrane of choroid plexus epithelial
                                                                                               cells. Am J Physiol Cell Physiol 286: C601–610.
 94. Fromm M, Schulzke J-D (2011) Barriers and channels formed by tight junction
       proteins. Ann NY Acad Sci 1257: 1–206.                                           108. Alexander SPH, Mathie A, Peters JA (2011) Guide to receptors and channels
                                                                                               (GRAC), 5th edn. Brit J Pharmacol (Suppl 1): S1–3234.
 95. Anderson JM, Van Italie CM (2009) Physiology and function of the tight
       junction. In: Cold Spring Harb Perspect Biol 1: a002584.                         109. Edwards JC, Kahl CR (2010) Chloride channels of intracellular membranes.
                                                                                               FEBS Letters 584: 2102–2111.
 96. Alberts B, Johnson A, Lewis J, Raff M (2008) Molecular Biology of the Cell
       (Garland Science, New York), 1151–1152.                                          110. Li H, Tornberg J, Kaila K, Airaksinen MS, Rivera C (2002) Patterns of cation-
                                                                                               chloride cotransporter expression during embryonic rodent CNS development.
 97. Fro¨mter E, Diamond J (1972) Route of passive ion permeation in epithelia.                Eur J Neurosci 16(12): 2358–2370.
       Nature New Biol 235: 9–13.
                                                                                        111. Hu¨bner CA, Hentschke M, Jacobs S, Hermans-Borgmeyer I (2004) Expression
 98. Diamond JM (1974) Tight and leaky junctions of epithelia: a perspective on                of the sodium-driven chloride bicarbonate exchanger NCBE during prenatal
       kisses in the dark. Fed Proc 33: 2220–2224.                                             mouse development. Gene Expr Patterns 5(2): 219–223.

 99. Friend DS, Gilula NB (1972) A distinctive cell contact in the rat adrenal cortex.  112. Nattie EE, Edwards WH (1981) CSF acid-base regulation and ventilation
       J Cell Biol 53: 758–778.                                                                during acute hypercapnia in the newborn dog. J Appl Physiol 50: 566–574.

100. Damkier HH, Aalkjaer C, Praetorius J (2010) Na+-dependent HCO3- import             113. Rossdale PD, Cash RSG, Leadon DP, Jeffcott LB (1982) Biochemical
       by the slc4a10 gene product involves Cl- export. J Biol Chem 285(35): 26998–            constituents of cerebrospinal fluid in premature and full term foals. Equine
       27007.                                                                                  vet. J 14(2): 134–138.

101. Murphy VA, Johanson CE (1989) Acidosis, acetazolamide, and amiloride:              114. Johanson CE, Woodbury DM, Withrow CD (1976) Distribution of bicarbonate
       effects of 22Na transfer across the blood-brain and blood-CSF barriers.                 between blood and cerebrospinal fluid in the neonatal rat in metabolic acidosis
       J Neurochem 52(4): 1058–1063.                                                           and alkalosis. Life Sci 19: 691–700.

102. Damkier HH, Nielsen S, Praetorius J (2007) Molecular expression of SLC4-           115. Jones HC, Keep RF (1988) Brain interstitial fluid calcium concentration during
       derived Na-dependent anion transporters in selected human tissues.                      development in the rat: control levels and changes in acute plasma
       Am J Physiol Regul Integr Comp Physiol 293: R2136–2146.                                 hypercalcaemia. Physiol Bohemoslov 37(3): 213–216.

                                                                                        116. Reed DJ, Withrow CD, Woodbury DM (1976) Electrolyte and acid-base
                                                                                               parameters of rat cerebrospinal fluid. Exper Brain Res 3: 212–219.

PLOS ONE | www.plosone.org                                                              19 July 2013 | Volume 8 | Issue 7 | e65629
   67   68   69   70   71   72