Page 20 - 1202 Bank Soalan Matematik Tambahan Tingkatan 5
P. 20

1
                                                                                        1
                             5
                                                                                                   2
                     Apabila t = —,                (b)  f (x) = x + 2                   —– = ——– = – —
                             3
                                                                                                   5

                                                                                              5
                                                            2
                                                      gf (x) = x  + 4x + 2
                                                                                        αβ
                         5
                                 5
                        1 3 21
                                1 3 22
                                                                                              2
                     v  = 2 — 10 – 3 —                gf (x) = g(x + 2)                     – —
                        50                            Katakan  y = x + 2                Maka, persamaan ialah
                     v  = —–                                x = y – 2                      1   2
                                                                                        2
                        3                                      2                        x  + —x – — = 0
                                                                                               5
                                                                                           5
                     Maka, halaju maksimum zarah ialah      g(y) = (y – 2)  + 4(y – 2) + 2       5x  + x – 2 = 0
                                                                                           2
                                                         = y  – 4y + 4 + 4y – 8 + 2
                                                           2
                     50
                     —– m s .                              2
                          –1
                      3                                  = y  – 2                  5.  (a)  Titik tengah AC = (3, 1)
                                                               2
                       ∫
                  (b)  s =   v dt                     (i)  g(x) = x  – 2                    y
                                                               2
                                                          g(2) = 2  – 2 = 2
                       ∫
                     s =   (20t – 6t ) dt             (ii)    fg(x) = 9                      A(1, 4)
                              2
                                                            2
                     s = 10t  – 2t  + c                   f (x  – 2) = 9                                  D(h, k)
                             3
                         2
                                                          2
                      ©PAN ASIA PUBLICATIONS
                     Apabila t = 0,  s = 0                x  – 2 + 2 = 9
                                                               2
                     10(0)  – 2(0)  + c = 0                    x  = 9                B(–3, 0)  O            x
                        2
                             3
                               c  = 0                          x = ±3
                     Oleh itu, s = 10t  – 2t .     3.  (a)    x  + 3 = t(x + 1)                     C(5, –2)
                                                              2
                                   3
                               2
                     Apabila t = 2, s  = 10(2)  – 2(2)   3  x  – tx + 3 – t = 0         h – 3
                                                          2
                                     2
                               2
                              s  = 24                       b  – 4ac , 0                ——– = 3
                                                             2
                                                                                         2
                               2
                     Apabila t = 3, s  = 10(3)  – 2(3)   3      (–t)  – 4(1)(3 – t) , 0    h = 9
                                     2
                                                         2
                               3
                                                                                        k + 0
                              s  = 36                     t  + 4t – 12 , 0              ——– = 1
                                                           2
                               3
                     Jumlah jarak yang dilalui           (t – 2)(t + 6) , 0              2
                     = s  – s   2                               –6  , t , 2                k = 2
                       3
                     = 36 – 24                     (b)  y  = 2x                         ∴ h = 9, k = 2
                                                       2
                                                                                            2 – (–2)
                                                                                                    4
                     = 12 m                           y = mx + c                    (b)  m  = ———– = — = 1
                  (c)  Apabila zarah melalui titik P,           (mx + c)  = 2x           PC  9 – 5  4
                                                                     2
                          s  = 0                        m x  + 2mcx + c  – 2x = 0       Kecerunan  dengan DC = –1
                                                                  2
                                                         2 2
                     10t  – 2t  = 0                     m x  + (2mc – 2)x + c  = 0      Maka, persamaan ialah
                                                         2 2
                                                                     2
                       2
                          3
                      2t (5 – t) = 0                             b  – 4ac = 0           y – 4 = –(x – 1)
                                                                  2
                      2
                          t  = 0 atau t = 5               (2mc – 2)  – 4m c  = 0          y = –x + 5
                                                                2
                                                                    2 2
                     Maka, t = 5 s.                    4m c  – 8mc + 4 – 4m c  = 0    6.  (a)    2 2x + 2  + 1 = 5(2 )
                                                        2 2
                                                                    2 2
                                                                                                       x
                  (d)  Apabila  zarah  bertukar  arah             –8mc = –4              2 ⋅2  + 1 – 5(2 ) = 0
                                                                                         2x    2
                                                                                                  x
                                                                        –4
                     pergerakannya,                                  m = —––              2  ⋅ 2  – 5(2 ) + 1 = 0
                                                                                        2
                                                                                           2x
                                                                                               x
                           v  = 0                                       –8c              4(2 ) – 5(2 ) + 1 = 0
                                                                                               x
                                                                                          2x
                                                                        1
                      2t(10 – 3t) = 0                                m = —–               (4(2 ) – 1)(2  – 1) = 0
                                                                                          x
                                                                                               x
                                                                        2c
                                    10
                           t  = 0 atau t = —–     4.  (a)  h(t) = 20t – 5t 2                    4(2 ) = 1  atau  2  = 2 0
                                                                                                  x
                                                                                                           x
                                     3
                                                                                                  x
                            10
                     Maka, t = —– s.                     = 5t(4 – t)                              2  = 2 –2    x = 0
                            3                                                                     x = –2
                                                                                               xy
                                                           h(t)                     (b)  (i)  log  ABB
                                                                                             4
                                                                                             1 log  xy
              PENTAKSIRAN SPM                                                              = — ——–– 2
                                                                                             2 1
                                                                                                 2
                                                         20                                    log  4
                                                                                                 2
                          Kertas 1                                 h(t) = 20t – 5t  2        1
                                                                                           = —(log  x + log  y)
                                                                                             4
                                                                                                 2
                                                                                                      2
              Bahagian A                                                                     1
                1.  (a)   y                                                                = —(p + q)
                                                                                             4
                                                                                              16y
                                                          0          4    t             (ii)  log  ——
                      3                                                                      8  x 2
                                   y = x                                                        16y
                             –1
                          y = f (x)                                                         log  ——
                                                      Apabila t = 2,                           2  x 2
                                                                                               3
                      2                               h(2) = 20(2) – 5(2) 2                = ————
                                                                                             1
                                                         = 20                              = —(log  16 + log  y – 2 log  x)
                                                      0 < h(t) < 20                          3  2     2      2
                      1                                                                      1
                                                                   5
                                 y = f(x)          (b)   (α + 1) + (β + 1) = —             = —(4 + q – 2p)
                                                                                             3
                                                                   2
                                           x                       5
                       0   1   2   3   4                      α + β = — – 2        7.  (a)    M = M e –0.2t
                                                                   2
                                                                                                 0
                                                                                                1
                                                                   1
                     0 < x < 2                                    = —                       M = —M 0
                                                                                                2
                                                                   2
                  (b)  f : (x, y) → (x – y, x + 2y)       (α + 1)(β + 1) = –1             —M  = M e –0.2t
                                                                                           1
                     f : (2, 3) → (–1, 8)             αβ + (α + β) + 1 = –1                2  0  0
                                                                         1
                     f : (–1, 8) → (–9, 15)                    αβ = –1 – 1 – —          –0.2t ln e = ln 0.5
                                                                                                ln 0.5
                     ∴ B(–1, 8), C(–9, 15)                               2                   t = ———
                                                                    5
                  (c)  f (x) = 3 – 4x                             = – —                         –0.2
                                                                    2
                     Katakan y = 3 – 4x = –3              1    1                             t = 3.47 tahun
                                6 = 4x                Jika — dan — adalah punca-punca,  (b)  ———— × ———
                                                                                        36 + 4AB 6
                                                                                                AB 6 – 2
                                                          α
                                                               β
                                   3
                                x = —                 — + — = ——––                       AB 6 + 2  AB 6  – 2
                                                              α + β
                                                       1
                                                          1
                                   2
                             3
                                                                                         36AB 6 – 72 + 24 – 8AB 6
                     ∴ f (–3) = —                      α  β   — αβ                      = —————————
                       –1
                                                              1
                             2
                                                                                                2
                                                              2
                                                                                         28AB 6 – 48
                2.  (a)  y = f (x) + 1                      = ——                        = ——–——
                                                               5
                     –2 < y < 3                              – —                            2
                                                               2
                     –2 < f (x) + 1 < 3                     = – —                       = 14AB 6 – 24
                                                               1
                     –3 < f (x) < 2                            5
              132
         10B_1202 BS MT Tg5.indd   132                                                                        23/12/2021   8:14 AM
   15   16   17   18   19   20   21   22