Page 53 - Past Year
P. 53

51 | P a g e

                      (b)


                                   y

                                                    h(x
                                                    )

                                 14
                               27/
                               2                          x
                                  0
                                         1/2


                                           
                      (c)    k   x   x  2 4  ;  x   1


                                                                   1
             19.      (a)    f g ( ) 5x   px           (b)    p 
                                                                   5


                                                                 
             20.      (a)   - Refer to lecturer for graph -   ;   R   ,1    4  3,
                                                              f
                      (b)    ( 3)f     4 ;  (0) 3  ;   (1) 
                                           
                                       f
                                                   f
                                                         4

                                                             x
             21.      (a)  (i)    f  f  ( )   ;  f   1 ( )   x  f  ( )   x         (ii)   a    1, b  1, c 
                                                                                                      2
                                    x
                                        x
                                                            x  1
                      (b)   q  1


             22.      p  4


                               4
             23.      (a)   x             (b)  b   ln5
                              3


                                        2
                                                   2
             24.      (a)    ( )f x  x    2  1 ;   h 
                      (b)   - Refer to lecturer for graph –

                              f  is a one to one function because a horizontal lone cut the graph at 1 point only.
                                     
                              R   1, 
                            f
                                                       
                                   2
                               x
                      (c)    f   1 ( )    x  1   ;   f   1 (3) 4

                                      2x  5
                                 x
             25.      (a)    g  1 ( )                   (b)    a  2
                                        a
   48   49   50   51   52   53   54   55   56   57   58