Page 54 - Past Year
P. 54

52 | P a g e



                                                                        
                                                                                         
             26.      (a)    Refer to Lecturer -          (b)    D    [ 4, ) , R   [ 2, )
                                                                                     
                                                                           
                                                                   f
                                                                                 f

                                                                     1
             27.      (a)    (i)     f g ( )   4bx       (ii)   b                     (b)    7
                                          x
                                                                     4

                               1
                          x
             28.       f   1 ( )   log x    - Graph refers to Lecturer –
                               2    2


                                    8x   2  5 p
                                           
                                                                       2
             29.       (a)(i)    ( )g x                  (ii)    ( )g x   x     (b)   3
                                         6

             30.      (a)   - Graph refers to Lecturer -

                                    D   f  1,         D      
                                                                   ,
                                                            g
                                    R               R   g  0,  
                                             ,
                                      f
                                
                      (b)    x   3 ln2
                                2 x    2
                      g   x 
             31.               x  1


             32.      p   1,q  2


             33.      (a)

                                 = {  :    ∈   }                              −1 = {  :    > 0}
                                                                               
                                 
                                 = {  :    > 0}                               −1 = {  :    ∈   }
                                 
                                                                               

                      (b)         403.43
              34.     (a)    g f    x   x   1

                                                                                      
                                                                                       1
                      (b)    (i)     f   1   x   x   1             (ii)    g f     x   x   2  1
                                                                    
                      (c)    D     1                 R    1   1, 
                               (g f  )                (g f  ) 
              35.     (a)    (i)    -refer to lecturer-

                                              e  2
                                               x
                             (ii)    f   1   x 
                                                3
                                                
                             (iii)   D   R   f  1    2 ,       R   D   f  1 
                                                
                                                                  f
                                      f
                                                
                                                   3
   49   50   51   52   53   54   55   56   57   58   59