Page 68 - Elementary Algebra Exercise Book I
P. 68

ELEMENTARY ALGEBRA EXERCISE BOOK I                                               equAtions




               2.57     The real numbers  α,β,γ  are roots of the cubic equation  2x + x − 4x +1 = 0.
                                                                                          2
                                                                                     3
                                                    1
                                                         1
                                              1
               Evaluate (1) α + β + γ , (2)   βγ  +  γα  +  αβ  , (3) α + β + γ .
                             2
                                  2
                                        2
                                                                       3
                                                                            3
                                                                  3
               Solution: (1) Vieta’s formulas imply  α + β + γ = −  (i),  αβ + βγ + γα = −2 (ii),
                                                                   1
                                                                   2
                         1
               αβγ = −  (iii). (i) -(ii)×2:
                                  2
                         2
                2     2    2                                                  1 2
                                                                                    1 2
                    2
                                2
                          2
                   α + β + γ +2αβ +2βγ +2γα − 2αβ − 2βγ − 2γα
               α + β + γ +2αβ +2βγ +2γα − 2αβ − 2βγ − 2γα =(− ) − (−2) × 2 ⇒
                                                                              2 =(− ) − (−2) × 2 ⇒
                  2
             2
                       2
                                 1
                      2
                 2
            α + β + γ =4 2   1 4 =4 .                                               2
               α + β + γ
                                 4
                    1  +  1  +  1  =  α+β+γ  =  −1/2  =1
               (2)  βγ   γα   αβ     αβγ     −1/2     .
                                                                 2
                                                          3
               (3) The original equation is equivalent to x =  −x +4x−1 , substitute α,β,γ  into it and add
                                                                   2
                                                                                           2
                                                                                              2
                                                                                        2
                                                                                                                −4 −2−3
                                                                          2
               them up to obtain  α +β +γ =    −α +4α−1  + 2  2      −γ +4γ−1    −(α +β +γ )+4(α+β+γ)−3        −4 1 = −2−3  1 4  =
                                                  2
                                                                       −γ +4γ−1
                                                            −β +4β−1
                                                                                    −(α +β +γ )+4(α+β+γ)−3
                                  3
                                       3
                                           3
                                                −α +4α−1
                                                                                          2
                                                                     +2
                                                                                 = 2
                                                                                       2
                                                 2
                                                          −β +4β−1
                                  3
                                           3
                                       3
                                                                                                                    2
                                5 α +β +γ =        2 2  +     2  2  +    2  2  =            2   2       =    4  2  =
                    1
  2
 2
 2
 2
 2
 2
 3
 3
                            −4 5
 3
 α +β +γ =  −α +4α−1 + −β +4β−1  + −γ +4γ−1  =  −(α +β +γ )+4(α+β+γ)−3  =  −4 −2−3  = −4 8 8 .
                    4
 2
 2
 2
                     2
   2
 −4 5
 8
               2.58    Solve the system of equations
                                                       2
                                            2
                                           x − xy + y − 19x − 19y =0,
                                                                  xy = −6.
               Multiply the second equation by 3 and add it to the first equation:
               (x + y) − 19(x + y) + 18 = 0 ⇔ (x + y − 1)(x + y − 18) = 0 ⇒ x + y =1(x + y) − 19(x + y) + 18 = 0 ⇔ (x + y − 1)(x + y − 18) = 0 ⇒ x + y =1or

                       2 2
               x + y = 18. We discuss these two cases separately.

                                                                                          2
               When x + y =1, we can treat x, y  as two roots of the quadratic equation z − z − 6= 0 ⇔ (z − 3)(z + 2) = 0 ⇒ z =3
 z − z − 6= 0 ⇔ (z − 3)(z + 2) = 0 ⇒ z =3 or  z = −2, thus we obtain two solutions  (3, −2), (−2, 3).
 2

                                                                                                                       √
                                                                                         2

               When  x + y = 18, we can treat  x, y  as two roots of the quadratic equation  z − 18z − 6 =0 ⇒ z =9 ± 2 97
                             √                                    √          √           √          √
 2
 z − 18z − 6 =0 ⇒ z =9 ± 2 97 thus we obtain two solutions (9 + 2 97, 9 − 2 97), (9 − 2 97, 9+ 2 97).
                                                                                       √         √            √          √
               Hence the original system has four solutions  (3, −2), (−2, 3), (9 + 2 97, 9 − 2 97), (9 − 2 97, 9+2 97)

 √       √            √         √
 (3, −2), (−2, 3), (9 + 2 97, 9 − 2 97), (9 − 2 97, 9+2 97).
                                               x
               2.59     Solve the equation  x + 85x    −x  − 100x −2x  = −14.
               Solution: Let  y = x , then the equation becomes
                                   x
                          2 = −14 ⇔ y + 14y + 85y − 100 = 0. Obviously  y =1 is one root, that is,
                y +  85  −  100         3       2
                    y    y
               x =1 whose root is  x =1. Let  α, β  be the other two roots, then Vieta’s formulas
                 x
               imply  1+ α + β = −14,α + β + αβ = 85, αβ = 100, from which we can obtain
               α + 15α + 100 = 0,β + 15β + 100 = 0. The discriminant  Δ=15 − 400 < 0, thus
                                                                                   2
                                      2
                 2
               α, β  do not exist. Hence,  x =1 is the only root of the original equation.
                                            Download free eBooks at bookboon.com
                                                            68
   63   64   65   66   67   68   69   70   71   72   73