Page 69 - Elementary Algebra Exercise Book I
P. 69

ELEMENTARY ALGEBRA EXERCISE BOOK I                                               equAtions




               2.60        The equation  5x − (10 cos α)x + 7 cos α +6 = 0 has two identical roots,  α  is
                                           2
               one angle of a parallelogram, and the sum of two adjacent sides is 6, find the maximal area
               of the parallelogram.


               Solution: The quadratic equation has two identical roots, thus the discriminant
                           2
                                                             2
               Δ = 100 cos α − 140 cos α − 120 = 0 ⇔ 5 cos α − 7 cos α − 6 =0 ⇒ cos α =       7±13  . Since
                                                                                               10
                                                    3
                                                                                                    0
                | cos α|≤ 1, then  cos α =  7−13  = − . The angle of a parallelogram,  α , is between  0  and
                                           10       5
                                                                                     √
                                          3
                                                                                                    4
                                                              0
                                                                    0
                   0
                                                                                              2
               180 , and since  cos α = − < 0, thus  α ∈ (90 , 180 ), then  sin α =    1 − cos α = . Let
                                          5                                                         5
               one side of parallelogram has length  u , then one adjacent side has length  6 − u . The area
                                              4
                                                    4
                                                            2
               S = u(6 − u) sin α = u(6 − u) = − (u − 3) +       36  . Hence, the maximal area  S max =  36
                                              5     5            5                                      5
               when  u =3.
               2.61     Find all positive integer solutions  (x, y) of the equation
                 √      √     √          √          √
               x y + y x −      2011x −    2011y +    2011xy = 2011.
               Solution: The equation is equivalent to  √ √ √   √ √ √ √ √  √       √ √       √ √         √ √     2  2     √ √ √  √  √ √
                                                      √
                                                                                                                             xy( x+ y)−
                                                         xy x+ xy y− 2011x− 2011y+ 2011xy−( 2011) =0 ⇔ xy( x+ y)−
                                                        xy x+ xy y− 2011x− 2011y+ 2011xy−( 2011) =0 ⇔
                                                                                                             √
                                                                       √
                                                                                     √
                                                                                                                                √
                                                                                                                           √ √
                                                                                                                      √
                                                                                   √
                                                                                                           √
                                                                 √ √
                                                            √
                                                                                                                    √
                                                          √
                                                                              √
                                                                                                       √
                                                               √
                                                                                                                         √
                                                                                                     √
                                                                            √
                                                                                             2
 √  √  √  √  √  √  √  √  √  √  2  √   √    √      √ √ 2011( x+ y)+ 2011 xy−( 2011) =0 ⇔ ( xy− 2011)( x+ y+ 2011) = 0
                                                                                           2
                                                    2011( x+ y)+ 2011 xy−( 2011) =0 ⇔ ( xy− 2011)( x+ y+ 2011) = 0
        √
                                           √
 √
 √
 √
                                     √
 √
 √
 xy x+ xy y− 2011x− 2011y+ 2011xy−( 2011) =0 ⇔  xy( x+ y)− √
                            2
 √
                  √
 √  √ xy x+ xy y− 2011x− 2011y+ 2011xy−( 2011) =0 ⇔  √xy( x+ y)−
 √
                           √
                                √
 √
            √
 √
  2
 √
 √
 2011( x+ y)+ 2011 xy−( 2011) =0 ⇔ ( xy− 2011)( x+ y+ 2011) = 0
 √
                       √
                                          √
                               √
 √
 √
 √
                                     √
                √
 2011( x+ y)+ 2011 xy−( 2011) =0 ⇔ ( xy− 2011)( x+ y+ 2011) = 0.
      2
                      √     √      √                  √       √
               Since    x +    y +   2011 > 0, then     xy −    2011 = 0 ⇒ xy = 2011. Since  2011 is a
               prime, then  x =1,y = 2011 or  x = 2011,y =1. Hence the original equation has two
               positive integer solutions  (1, 2011), (2011, 1).
               2.62     x 1 ,x 2 are two roots of the quadratic equation  x − (k − 2)x + k +3k +5 = 0
                                                                          2
                                                                                           2
               where  k  is a real number, find the maximum value of  x + x .
                                                                              2
                                                                        2
                                                                        1
                                                                              2
               Solution: According to Vieta’s formulas, we have x 1 + x 2 = k − 2,x 1 x 2 = k +3k +5, thus
                                                                                          2
               x + x =(x 1 + x 2 ) − 2x 1 x 2 =(k − 2) − 2(k +3k + 5) = −(k + 5) + 19.
                      2
                                                       2
                 2
                                   2
                                                              2
                                                                                      2
                      2
                 1
               Since the equation has real roots, then the discriminant
                                                         2
                            2
                                   2
               Δ=(k − 2) − 4(k +3k + 5) ≥ 0 ⇔ 3k + 16k + 16 ≤ 0 ⇒−4 ≤ k ≤− . The function
                                                                                          4
                                                                                          3
                                                                                                       4
                f(k) = −(k + 5) + 19 is a monotonically decreasing function on the interval  [−4, − ],
                                2
                                                                                                       3
               thus the maximum value is  f(−4) = 18 which is also the maximum value of  x + x .
                                                                                                     2
                                                                                                2
                                                                                                1
                                                                                                     2
                                            Download free eBooks at bookboon.com
                                                            69
   64   65   66   67   68   69   70   71   72   73   74