Page 572 - Elementary_Linear_Algebra_with_Applications_Anton__9_edition
P. 572

(a) If A is a square matrix, then and are orthogonally diagonalizable.

(b) If and are eigenvectors from distinct eigenspaces of a symmetric matrix, then
                                        .

(c) An orthogonal matrix is orthogonally diagonalizable.

(d) If A is an invertible orthogonally diagonalizable matrix, then  is orthogonally
     diagonalizable.

     Does there exist a symmetric matrix with eigenvalues           ,,  and
15. corresponding eigenvectors

     If so, find such a matrix; if not, explain why not.

     Is the converse of Theorem 7.3.2b true?
16.

Copyright © 2005 John Wiley & Sons, Inc. All rights reserved.
   567   568   569   570   571   572   573   574   575   576   577