Page 4 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 4

Page 4
                 Document Title
                Fundamentals of Stress and Vibration                                  Chapter Title
                [A Practical guide for aspiring Designers / Analysts]              2. Engineering Mechanics

                ʹǤͶ  ‹–• ƒ†  ‹‡•‹‘•

                 ‹–•  ƒ†  †‹‡•‹‘•  ‹•  ‘‡  ‘ˆ  –Ї  ‘•–  ’‘™‡”ˆ—Ž  –‘‘Ž•  –Šƒ–  …‘—ކ  „‡  —•‡†  ‹  ƒ›  •‹–—ƒ–‹‘ǡ
                ‹””‡•’‡…–‹˜‡  ‘ˆ  –Ї  ‡‰‹‡‡”‹‰  †‹•…‹’Ž‹‡ǡ  –‘  ‡•–ƒ„Ž‹•Š  –Ї  ”‡Žƒ–‹‘•Š‹’  „‡–™‡‡  –Ї  ’Š›•‹…ƒŽ
                ’ƒ”ƒ‡–‡”• ‹ “—‡•–‹‘Ǥ
                 šƒ’Ž‡ǣ ‹– …‘—ކ „‡ ƒ •‹’އ ”‡Žƒ–‹‘•Š‹’ „‡–™‡‡ǣ
                       ·   ‹•’Žƒ…‡‡–ǡ ƒ……‡Ž‡”ƒ–‹‘ ƒ† –‹‡Ǥ
                       ·   ‘™‡”ǡ ƒ‰—Žƒ” ˜‡Ž‘…‹–› ƒ† –‘”“—‡ Ǥ

                       ·   Š”—•–ǡ †‡•‹–›ǡ ™‹†‹ŽŽ    ǡ ”ƒ†‹—• ‘ˆ –Ї ƒ‡”‘ ˆ‘‹Ž ƒ† ™‹† ˜‡Ž‘…‹–›Ǥ
                 Ї  ’Ћޑ•‘’Š›  ‘ˆ  —‹–•  ƒ†  †‹‡•‹‘•  ‹•  –‘  ‹†‡–‹ˆ›  ƒŽŽ  –Ї  ’Š›•‹…ƒŽ  ’ƒ”ƒ‡–‡”•  ‹  ƒ  ‰‹˜‡
                •‹–—ƒ–‹‘ǡ •—…Š –Šƒ–ǡ –Ї ”‡Žƒ–‹‘•Š‹’ „‡–™‡‡ ƒ› –™‘ ’ƒ”ƒ‡–‡”• …‘—ކ „‡ ‡•–ƒ„Ž‹•Ї†Ǥ  ‘™‡˜‡”ǡ

                ‘‡ ‘ˆ –Ї Ž‹‹–ƒ–‹‘• ‘ˆ —‹–• ƒ† †‹‡•‹‘• ‹• –Šƒ–ǡ ‹– …ƒ‘– „‡ —•‡† –‘ ϐ‹† ‘—– –Ї
                …‘•–ƒ–• ‘ˆ ’”‘’‘”–‹‘ƒŽ‹–›Ǥ

                Example1: Consider the relationship between displacement, acceleration and time. This is
                                               y z
                                          x
                mathematically given by:  s = a t      - - - - (2.1)
                Where, (s) is the displacement, (a) is the acceleration and (t) is time, and (x, y and z) are their
                respective exponents that need to be computed.

                           Parameters                     Units                     Dimensions


                         Displacement (s)               Meters (m)                   Length (L)


                                                                    m          Length ∗ Time   LT −2
                                                                                            −2
                                                                 2
                         Acceleration (a)           meter/second
                                                                   s 2
                             Time (t)                   Seconds(t)                    Time(T)


                  Writing the dimension of parameters in equation (2.1), we get:

                                      L  y
                                                    x
                                              z
                                                         y
                                                                            y
                                                                       x
                                                                 z
                       y z
                  x
                                 x
                 s = a t   =   L  =        T    =  L = L  T −2y T   =  L = L  T −2y+z     - - - - (2.2)
                                      T 2
                By equating the exponents of the respective dimensions of LHS and RHS from equation (2.2),
                we get:
                (x = y) : powers of ‘L’ on both sides
                (-2y + z = 0) : comparing powers of time (T) on both sides
                Therefore, we have, (z = 2y=2x)
                Since we seek displacements relation with acceleration and time, let the power of displacement

                (x) be 1.

                    Page 4      QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
   1   2   3   4   5   6   7   8   9