Page 5 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 5

Document Title
                 Fundamentals of Stress and Vibration                              2. Engineering Mechanics   Chapter
                 [A Practical guide for aspiring Designers / Analysts]

                Since (x = 1), we have (z = 2)

                                                   2
                This given us the relationship:  s = at     - - - - (2.3)
                It is to be noted that, the actual relationship between displacement, acceleration and time, for a
                straight line motion, is given by:

                     1
                         2
                 s =  at
                     2
                The limitation of this approach is that, the constant (1/2) cannot be computed.


                 šƒ’Ž‡  ʹǣ  ‹–  …ƒ  „‡  ƒ”‰—‡†  …‘‘•‡•‹…ƒŽŽ›  –Šƒ–ǡ  –Ї  –Š”—•–  †‡˜‡Ž‘’‡†  „›  ƒ  ™‹†‹ŽŽ
                †‡’‡†• ‘ ™‹† ˜‡Ž‘…‹–›ǡ †‡•‹–› ‘ˆ –Ї ƒ‹”ǡ ‰‡‘‡–”› ‘ˆ –Ї ƒ‡”‘ ˆ‘‹Ž ȋ”ƒ†‹—• ‘ˆ –Ї ƒ‡”‘ ˆ‘‹ŽȌ ƒ†
                    ‘ˆ –Ї ™‹†‹ŽŽǤ

                                                       a b
                                                            c d
                Mathematically, thrust is given by:   T = v ρ N r     - - - - (2.4)
                 Ї”‡ǡ ȋƒǡ „ǡ … ƒ† †Ȍ ƒ”‡ ‡š’‘‡–• ‘ˆ –Ї‹” ”‡•’‡…–‹˜‡ –‡”•Ǥ


                           Parameters                      Units                     Dimensions


                            Thrust (T)                   Newton (N)           Mass ∗ Acceleration(MLT −2 )

                                                                    m                            −1
                           Velocity (v)              meter/second                Length/time  LT
                                                                    s

                                                                                                  −3
                                                                     kg          Mass/Volume  ML
                           Density (ρ)             kilogram/meter
                                                                  3
                                                                     m 3
                            Radius (r)                   Meters (m)                   Length (L)

                                                                       1                (T −1 )
                             RPS (N)               revolutions/second
                                                                       s


                Writing the dimension of parameters in equation (2.4), we get:

                                                                                                 b
                           c d
                      a b
                                                                  L   =  MLT
                                                     ML     T
                 T = v ρ N r   =  MLT  −2  =  LT −2 a  3 b   −1 c  d        −2  = L a+d−3b  T −a−c  M    - - - - (2.5)
                By equating the exponents of the respective dimensions of LHS and RHS from equation (2.5), we get:
                (b = 1) : exponents of mass (M)
                (a + c = 2) : exponents of time (T)

                (a + d – 3b = 1) : exponents of length (L)

                              QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,   P
                                                                                                  Page 5 age 5
                                                Copyright Diary No – 9119/2018-CO/L
   1   2   3   4   5   6   7   8   9   10