Page 132 - Cardiac Nursing
P. 132
M
M
t
q
0:4
10.
10.
t
7-1
09
09
7-1
p
p
p
g
g
3
g
M
Pa
Pa
0/0
08
0 A
0 A
0:4
0/0
6/2
6/2
A
xd
08
3
xd
1
q
q
3
LWBK340-c04_
LWB
LWB K34 0-c 04_ p pp097-110.qxd 30/06/2009 10:40 AM Page 108 Aptara
K34
p
04_
0-c
ara
A
ara
ara
e 1
1
009
009
e 1
108 PA R T I I / Physiologic and Pathologic Responses
74. Berg, K., Dahlen, G., & Borresen, A. L. (1979). Lp(a) phenotypes, other 97. Mitchell, B. D., Blangero, J., Comuzzie, A. G., et al. (1998). A paired
lipoprotein parameters, and a family history of coronary heart disease in sibling analysis of the beta-3 adrenergic receptor and obesity in Mexican
middle-aged males. Clinical Genetics, 16(5), 347–352. Americans. Journal of Clinical Investigations, 101(3), 584–587.
6
6
75. Blumenthal, S., Jesse, M. J., Hennekens, C. H., et al. (1975). Risk fac- 98. Nagase, T., Aoki, A., Yamamoto, M., et al. (1997). Lack of association
tors for coronary artery disease in children of affected families. Journal between the Trp64 Arg mutation in the beta 3-adrenergic receptor gene
of Pediatrics, 87(6, Pt. 2), 1187–1192. and obesity in Japanese men: A longitudinal analysis. The Journal of
7
7
76. Hamby, R. I. (1981). Hereditary aspects of coronary artery disease. Clinical Endocrinology Metabolism, 82(4), 1284–1287.
American Heart Journal, 101(5), 639–649. 99. Ristow, M., Muller-Wieland, D., Pfeiffer, A., et al. (1998). Obesity as-
77. Rissanen, A. M., & Nikkila, E. A. (1977). Coronary artery disease and sociated with a mutation in a genetic regulator of adipocyte differentia-
its risk factors in families of young men with angina pectoris and in con- tion. New England Journal of Medicine, 339(14), 953–959.
trols. British Heart Journal, 39(8), 875–883. 100. Sina, M., Hinney, A., Ziegler, A., et al. (1999). Phenotypes in three pedi-
78. Rosengren, A., Wilhelmsen, L., Eriksson, E., et al. (1990). Lipoprotein grees with autosomal dominant obesity caused by haploinsufficiency
(a) and coronary heart disease: A prospective case-control study in a mutations in the melanocortin-4 receptor gene. American Journal of
general population sample of middle aged men. BMJ, 301(6763), Human Genetics, 65(6), 1501–1507.
1248–1251. 101. Walder, K., Norman, R. A., Hanson, R. L., et al. (1998). Association be-
79. Anderson, A. J., Loeffler, R. F., Barboriak, J. J., et al. (1979). Occlusive tween uncoupling protein polymorphisms (UCP2-UCP3) and energy
coronary artery disease and parental history of myocardial infarction. metabolism/obesity in Pima Indians. Human Molecular Genetics, 7(9),
7
7
Preventive Medicine, 8(3), 419–428. 1431–1435.
80. Sharp, S. D., Williams, R. R., Hunt, S. C., et al. (1992). Coronary risk 102. Kraft, H. G., Lingenhel, A., Kochl, S., et al. (1996). Apolipoprotein(a)
factors and the severity of angiographic coronary artery disease in mem- kringle IV repeat number predicts risk for coronary heart disease.
6
6
bers of high-risk pedigrees. American Heart Journal, 123(2), 279–285. Arteriosclerosis, Thrombosis, and Vascular Biology, 16(6), 713–719.
81. Smithies, O., & Maeda, N. (1995). Gene targeting approaches to com- 103. Hixson, J. E. (1991). Apolipoprotein E polymorphisms affect athero-
plex genetic diseases: Atherosclerosis and essential hypertension. Pro- sclerosis in young males. Pathobiological Determinants of Atherosclero-
ceedings of the National Academy of Science USA, 92(12), 5266–5272. sis in Youth (PDAY) Research Group. Arteriosclerosis Thrombosis, 11(5),
82. Tamminen, M., Mottino, G., Qiao, J. H., et al. (1999). Ultrastructure 1237–1244.
of early lipid accumulation in ApoE-deficient mice. Arteriosclerosis, 104. Moore, J. H., Reilly, S. L., Ferrell, R. E., et al. (1997). The role of the
Thrombosis, and Vascular Biology, 19(4), 847–853. apolipoprotein E polymorphism in the prediction of coronary artery dis-
83. Mehrabian, M., & Lusis, A. J. (1992). Molecular genetics of coronary ar- ease age of onset. Clinical Genetics, 51(1), 22–25.
tery disease. Candidate genes and processes in atherosclerosis. New York: 105. Wang, X. L., McCredie, R. M., & Wilcken, D. E. (1995). Polymor-
Karger. phisms of the apolipoprotein E gene and severity of coronary artery
84. Heeneman, S., Lutgens, E., Schapira, K. B., et al. (2008). Control of disease defined by angiography. Arteriosclerosis, Thrombosis, and Vascular
atherosclerotic plaque vulnerability: Insights from transgenic mice. Fron- Biology, 15(8), 1030–1034.
tiers in Bioscience, 13, 6289–6313. 106. Wilson, P. W., Schaefer, E. J., Larson, M. G., et al. (1996). Apolipopro-
85. Stoll, M., Kwitek-Black, A. E., Cowley, A. W., Jr., et al. (2000) New tar- tein E alleles and risk of coronary disease. A meta-analysis. Arteriosclero-
get regions for human hypertension via comparative genomics. Genome sis, Thrombosis, and Vascular Biology, 16(10), 1250–1255.
6
6
Research, 10(4), 473–482. 107. Gudnason, V., Thormar, K., & Humphries, S. E. (1997). Interaction of
86. Villa-Colinayo, V., Shi, W., Araujo, J., et al. (2000). Genetics of athero- the cholesteryl ester transfer protein I405V polymorphism with alcohol
sclerosis: The search for genes acting at the level of the vessel wall. Cur- consumption in smoking and non-smoking healthy men, and the effect
rent Atherosclerosis Reports, 2(5), 380–389. on plasma HDL cholesterol and apoAI concentration. Clinical Genetics,
87. Altshuler, D., Hirschhorn, J. N., Klannemark, M., et al. (2000). The 51(1), 15–21.
common PPARgamma Pro12Ala polymorphism is associated with de- 108. Kuivenhoven, J. A., Jukema, J. W., Zwinderman, A. H., et al. (1998).
6
creased risk of type 2 diabetes. Natural Genetics, 26(1), 76–80. The role of a common variant of the cholesteryl ester transfer protein
6
88. Hart, L. M., Stolk, R. P., Dekker, J. M., et al. (1999). Prevalence of vari- gene in the progression of coronary atherosclerosis. The Regression
ants in candidate genes for type 2 diabetes mellitus in The Netherlands: Growth Evaluation Statin Study Group. New England Journal of Medi-
The Rotterdam study and the Hoorn study. The Journal of Clinical En- cine, 338(2), 86–93.
docrinology and Metabolism, 84(3), 1002–1006. 109. Jukema, J. W., van Boven, A. J., Groenemeijer B, et al. (1996). The Asp9
89. Horikawa, Y., Oda, N., Cox, N. J., et al. (2000). Genetic variation in the Asn mutation in the lipoprotein lipase gene is associated with increased
gene encoding calpain-10 is associated with type 2 diabetes mellitus. progression of coronary atherosclerosis. REGRESS Study Group, In-
6
6
Natural Genetics, 26(2), 163–175. teruniversity Cardiology Institute, Utrecht, The Netherlands. Regression
90. Reis, A. F., Ye, W. Z., Dubois-Laforgue, D., et al. (2000). Association of Growth Evaluation Statin Study. Circulation, 94(8), 1913–1918.
a variant in exon 31 of the sulfonylurea receptor 1 (SUR1) gene with 110. Sanghera, D. K., Aston, C. E., Saha, N., et al. (1998). DNA polymor-
type 2 diabetes mellitus in French Caucasians. Human Genetics, 107(2), phisms in two paraoxonase genes (PON1 and PON2) are associated
7
7
138–144. with the risk of coronary heart disease. American Journal of Human
91. Stone, L. M., Kahn, S. E., Fujimoto, W. Y., et al. (1996). A variation at Genetics, 62(1), 36–44.
position -30 of the beta-cell glucokinase gene promoter is associated with 111. Gardemann, A., Stricker, J., Humme, J., et al. (1999). Angiotensinogen
reduced beta-cell function in middle-aged Japanese-American men. Di- T174M and M235T gene polymorphisms are associated with the extent
abetes, 45(4), 422–428. of coronary atherosclerosis. Atherosclerosis, 145(2), 309–314.
W
W
92. Vinik, A., & Bell, G. (1988). Mutant insulin syndromes. Hormone and 112. Wang, J., Liu, Z., & Chen, B. (2000). Association between genetic
Metabolic Research, 20(1), 1–10. polymorphism of dopamine transporter gene and susceptibility to
93. Frossard, P. M., Lestringant, G. G., Malloy, M. J., et al. (1999). Human Parkinson’s disease. Zhonghua Yi Xue Za Zhi, 80(5), 346–348.
renin gene BglI dimorphism associated with hypertension in two inde- 113. Winkelmann, B. R., Russ, A. P., Nauck, M., et al. (1999). An-
6
pendent populations. Clinical Genetics, 56(6), 428–433. giotensinogen M235T polymorphism is associated with plasma an-
6
94. Williams, R. R., Hunt, S. C., Hopkins, P. N., et al. (1994). Evidence for giotensinogen and cardiovascular disease. American Heart Journal,
single gene contributions to hypertension and lipid disturbances: Defin- 137(4, Pt. 1), 698–705.
ition, genetics, and clinical significance. Clinical Genetics, 46(1, Special 114. Wang, J. G., & Staessen, J. A. (2000). Genetic polymorphisms in the
6
6
No.), 80–87. renin-angiotensin system: Relevance for susceptibility to cardiovascular
95. Heinonen, P., Koulu, M., Pesonen, U., et al. (1999). Identification of a disease. European Journal of Pharmacology, 410(2/3), 289–302.
three-amino acid deletion in the alpha2B-adrenergic receptor that is as- 115. Tiret, L., Bonnardeaux, A., Poirier, O., et al. (1994). Synergistic effects
sociated with reduced basal metabolic rate in obese subjects. The Journal of angiotensin-converting enzyme and angiotensin-II type 1 receptor
of Clinical Endocrinology Metabolism, 84(7), 2429–2433. gene polymorphisms on risk of myocardial infarction. Lancet,
96. Large, V., Hellstrom, L., Reynisdottir, S., et al. (1997). Human beta-2 344(8927), 910–913.
adrenoceptor gene polymorphisms are highly frequent in obesity and as- 116. Cambien, F., Poirier, O., Lecerf, L., et al. (1992). Deletion polymor-
F
F
sociate with altered adipocyte beta-2 adrenoceptor function. Journal of phism in the gene for angiotensin-converting enzyme is a potent risk fac-
Clinical Investigations, 100(12), 3005–3013. tor for myocardial infarction. Nature, 359(6396), 641–644.

