Page 151 - Cardiac Nursing
P. 151
8:2
5 A
M
009
31.
9/0
9/2
P
1-1
Apt
ara
p11
g
e 1
27
K34
LWBK340-c05_p111-131.qxd 09/09/2009 08:25 AM Page 127 Aptara
05_
0-c
LWB
L L LWB K34 0-c 05_ p11 1-1 31. qxd 0 9/0 9/2 009 0 0 8:2 5 A M P a a g e 1 27 Apt ara
qxd
0
C HAPTER 5 / Atherosclerosis, Inflammation, and Acute Coronary Syndrome 127
31. Stary, H. C. (1994). Changes in components and structure of athero- 54. Fuster, V., Badimon, L., Badimon, J. J., et al. (1992). The pathogenesis
sclerotic lesions developing from childhood to middle age in coronary of coronary artery disease and the acute coronary syndromes (1). New
6
arteries. Basic Research in Cardiology, 89(Suppl. 1), 17–32. England Journal of Medicine, 326, 242–250.
6
32. Stary, H. C., Blankenhorn, D. H., Chandler, A. B., et al. (1992). A def- 55. Bini, A., Fenoglio, J. J., Jr., Mesa-Tejada, R., et al. (1989). Identification
inition of the intima of human arteries and of its atherosclerosis-prone and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation
regions. A report from the Committee on Vascular Lesions of the Coun- products in atherosclerosis. Use of monoclonal antibodies. Arteriosclero-
cil on Arteriosclerosis, American Heart Association. Circulation, 85, sis, 9, 109–121.
391–405. 56. Taeymans, Y., Theroux P., Lesperance J., et al. (1992). Quantitative an-
33. Stary, H. C., Chandler, A. B., Glagov, S., et al. (1994). A definition of giographic morphology of the coronary artery lesions at risk of throm-
initial, fatty streak, and intermediate lesions of atherosclerosis. A report botic occlusion. Circulation, 85, 78–85.
from the Committee on Vascular Lesions of the Council on Arterioscle- 57. Aviram, M., & Brook, J. G. (1987). Platelet activation by plasma
rosis, American Heart Association. Circulation, 89, 2462–2478. lipoproteins. Progress in Cardiovascular Diseases, 30, 61–72.
34. Stary, H. C. (1987). Macrophages, macrophage foam cells, and eccentric 58. Brook, J. G., & Aviram, M. (1988). Platelet lipoprotein interactions.
4
intimal thickening in the coronary arteries of young children. Athero- Seminars in Thrombosis and Hemostasis, 14, 258–265.
4
4
4
sclerosis, 64, 91–108. 59. Betteridge, J. (1987). Nutrition and platelet function in atherogenesis.
6
35. Stary, H. C. (1989). Evolution and progression of atherosclerotic lesions Proceedings of the Nutrition Society, 46, 345–359.
6
in coronary arteries of children and young adults. Arteriosclerosis, 9, 60. Miller, G. J. (1992). Hemostasis and cardiovascular risk. The British and
I19–I32. European experience. Archives of Pathology and Laboratory Medicine,
6
6
36. Katsuda, S., Boyd, H. C., Fligner, C., et al. (1992). Human atheroscle- 116, 1318–1321.
rosis. III. Immunocytochemical analysis of the cell composition of 61. Loscalzo, J. (1990). Lipoprotein(a). A unique risk factor for
lesions of young adults. American Journal of Pathology, 140, 907–914. atherothrombotic disease. Arteriosclerosis, 10, 672–679.
37. Munro, J. M., van der Walt, J. D., Munro, C. S., et al. (1987). An im- 62. Scanu, A. M. (1991). Lp(a) as a marker for coronary heart disease risk.
4
4
munohistochemical analysis of human aortic fatty streaks. Human Clinical Cardiology, 14, I35–I39.
Pathology, 18, 375–380. 63. Dobrin, P. B., Baker, W. H., & Gley, W. C. (1984). Elastolytic and col-
38. Cornhill, J. F., Herderick, E. E., & Stary, H. C. (1990). Topography of lagenolytic studies of arteries. Implications for the mechanical properties
human aortic sudanophilic lesions. Monographs on Atherosclerosis, 15, of aneurysms. Archives of Surgery, 119, 405–409.
13–19. 64. Langille, B. L., & O’Donnell, F. (1986). Reductions in arterial diameter
39. Glagov, S., Zarins, C., Giddens, D. P., et al. (1988). Hemodynamics and produced by chronic decreases in blood flow are endothelium-depend-
atherosclerosis. Insights and perspectives gained from studies of human ent. Science, 231, 405–407.
arteries. Archives of Pathology and Laboratory Medicine, 112, 1018–1031. 65. Gould, K. L., & Lipscomb, K. (1974). Effects of coronary stenoses on
4
40. Small, D. M. (1988). George Lyman Duff memorial lecture. Progression coronary flow reserve and resistance. American Journal of Cardiology, 34,
4
and regression of atherosclerotic lesions. Insights from lipid physical bio- 48–55.
chemistry. Arteriosclerosis, 8, 103–129. 66. Goldstein, R. A., Kirkeeide, R. L., Demer, L. L., et al. (1987). Relation
41. Jennings, R. B., Murry, C. E., Steenbergen, C., Jr., et al. (1990). Devel- between geometric dimensions of coronary artery stenoses and myocar-
opment of cell injury in sustained acute ischemia. Circulation, 82, dial perfusion reserve in man. Journal of Clinical Investigations, 79,
II2–I12. 1473–1478.
42. Davies, M. J., Gordon, J. L., Gearing, A. J., et al. (1993). The expres- 67. Arnett, E. N., Isner, J. M., Redwood, D. R., et al. (1979). Coronary ar-
sion of the adhesion molecules ICAM-1, VCAM-1, PECAM, and tery narrowing in coronary heart disease: Comparison of cineangio-
E-selectin in human atherosclerosis. Journal of Pathology, 171, 223–229. graphic and necropsy findings. Annals of Internal Medicine, 91,
43. Falk, E. (1992). Why do plaques rupture? Circulation, 86, III30–III42. 350–356.
44. Falk, E. (1989). Morphologic features of unstable atherothrombotic 68. Blankenhorn, D. H., & Curry, P. J. (1982). The accuracy of arteriogra-
plaques underlying acute coronary syndromes. American Journal of Car- phy and ultrasound imaging for atherosclerosis measurement. A review.
6
6
diology, 63, 114E–120E. Archives of Pathology and Laboratory Medicine, 106, 483–489.
45. Richardson, P. D., Davies, M. J., & Born, G. V. (1989). Influence of 69. Markis, J. E., Joffe, C. D., Cohn, P. F., et al. (1976). Clinical significance
7
7
plaque configuration and stress distribution on fissuring of coronary ath- of coronary arterial ectasia. American Journal of Cardiology, 37, 217–222.
erosclerotic plaques. Lancet, 2, 941–944. 70. Stevens, R. L., Colombo, M., Gonzales, J. J., et al. (1976). The gly-
46. Tracy, R. E., Devaney, K., & Kissling, G. (1985). Characteristics of the cosaminoglycans of the human artery and their changes in atherosclero-
plaque under a coronary thrombus. Virchows Archives A Pathology sis. Journal of Clinical Investigations, 58, 470–481.
Anatomy and Histopathology, 405, 411–427. 71. Tammi, M., Seppala, P. O., Lehtonen, A., et al. (1978). Connective tis-
47. van der Wal, A. C., Becker, A. E., van der Loos, C. M., et al. (1994). Site sue components in normal and atherosclerotic human coronary arteries.
of intimal rupture or erosion of thrombosed coronary atherosclerotic Atherosclerosis, 29, 191–194.
plaques is characterized by an inflammatory process irrespective of the 72. Wagner, W. D., & Salisbury, B. G. (1978). Aortic total glycosaminogly-
dominant plaque morphology. Circulation, 89, 36–44. can and dermatan sulfate changes in atherosclerotic rhesus monkeys.
48. Henney, A. M., Wakeley, P. R., Davies, M. J., et al. (1991). Localization Laboratory Investigations, 39, 322–328.
of stromelysin gene expression in atherosclerotic plaques by in situ hy- 73. Iverius, P. H. (1972). The interaction between human plasma lipopro-
bridization. Proceedings of the National Academy of Sciences USA, 88, teins and connective tissue glycosaminoglycans. Journal of Biological
8154–8158. Chemistry, 247, 2607–2613.
7
7
49. Steinberg, D., & Witztum, J. L. (1990). Lipoproteins and atherogene- 74. Edwards, I. J., Wagner, W. D., & Owens, R. T. (1990). Macrophage se-
sis. Current concepts. Journal of the American Medical Association, 264, cretory products selectively stimulate dermatan sulfate proteoglycan
4
4
3047–3052. production in cultured arterial smooth muscle cells. American Journal of
50. Nobuyoshi, M., Tanaka, M., Nosaka, H., et al. (1991). Progression of Pathology, 136, 609–621.
6
6
coronary atherosclerosis: Is coronary spasm related to progression? Jour- 75. Banda, M. J., & Werb, Z. (1981). Mouse macrophage elastase. Purifica-
nal of the American College of Cardiology, 18, 904–910. tion and characterization as a metalloproteinase. Biochemistry Journal,
51. Ku, D. N., Giddens, D. P., Zarins, C. K., et al. (1985). Pulsatile flow and 193, 589–605.
atherosclerosis in the human carotid bifurcation. Positive correlation be- 76. Robert, L., Jacob, M. P., Frances, C., et al. (1984). Interaction between
tween plaque location and low oscillating shear stress. Arteriosclerosis, 5, elastin and elastases and its role in the aging of the arterial wall, skin and
293–302. other connective tissues. A review. Mechanisms of Ageing and Develop-
52. Barger, A. C., Beeuwkes, R., III, Lainey, L. L., et al. (1984). Hypothesis: ment, 28, 155–166.
Vasa vasorum and neovascularization of human coronary arteries. A pos- 77. Barath, P., Fishbein, M. C., Cao, J., et al. (1990). Detection and local-
sible role in the pathophysiology of atherosclerosis. New England Jour- ization of tumor necrosis factor in human atheroma. American Journal
nal of Medicine, 310, 175–177. of Cardiology, 65, 297–302.
53. Kullo, I. J., Edwards, W. D., & Schwartz, R. S. (1998). Vulnerable 78. Jonasson, L., Holm, J., Skalli, O., et al. (1986). Regional accumulations
plaque: Pathobiology and clinical implications. Annals of Internal Medi- of T cells, macrophages, and smooth muscle cells in the human athero-
cine, 129, 1050–1060. sclerotic plaque. Arteriosclerosis, 6, 131–138.
6
6

