Page 152 - Cardiac Nursing
P. 152
0
9/0
P
1-1
31.
qxd
28
009
8:2
p11
9/2
M
5 A
Apt
K34
0-c
05_
L L LWB K34 0-c 05_ p11 1-1 31. qxd 0 9/0 9/2 009 0 0 8:2 5 A M P a a g e 1 28 Apt ara
LWB
LWBK340-c05_p111-131.qxd 09/09/2009 08:25 AM Page 128 Aptara
g
ara
e 1
128 PA R T I I / Physiologic and Pathologic Responses
79. Ball, R. Y., Stowers, E. C., Burton, J. H., et al. (1995). Evidence that the 102. Kim, K. M. (1976). Calcification of matrix vesicles in human aortic
death of macrophage foam cells contributes to the lipid core of valve and aortic media. Federation Proceedings, 35, 156–162.
atheroma. Atherosclerosis, 114, 45–54. 103. Urry, D. W. (1971). Neutral sites for calcium ion binding to elastin and
4
4
80. Mitchinson, M. J., Hothersall, D. C., Brooks, P. N., et al. (1985). The collagen: A charge neutralization theory for calcification and its relation-
distribution of ceroid in human atherosclerosis. Journal of Pathology, ship to atherosclerosis. Proceedings of the National Academy of Sciences
145, 177–183. USA, 68, 810–814.
81. Rosenfeld, M. E., & Ross, R. (1990). Macrophage and smooth muscle 104. Kannel, W. B. (1997). Cardiovascular risk factors in the elderly. Coro-
cell proliferation in atherosclerotic lesions of WHHL and comparably nary Artery Diseases, 8, 565–575.
hypercholesterolemic fat-fed rabbits. Arteriosclerosis, 10, 680–687. 105. Kannel, W. B., McGee, D., & Gordon, T. (1976). A general cardiovas-
82. Palinski, W., Rosenfeld, M. E., Yla-Herttuala, S., et al. (1989). Low den- cular risk profile: The Framingham Study. American Journal of Cardiol-
sity lipoprotein undergoes oxidative modification in vivo. Proceedings of ogy, 38, 46–51.
6
6
the National Academy of Sciences USA, 86, 1372–1376. 106. Koenig, W. (2001). Inflammation and coronary heart disease: An
83. Salonen, J. T., Yla-Herttuala, S., Yamamoto, R., et al. (1992). Autoanti- overview. Cardiology in Review, 9, 31–35.
body against oxidised LDL and progression of carotid atherosclerosis. 107. Libby, P., Ridker, P. M., & Maseri, A. (2002). Inflammation and ather-
Lancet, 339, 883–887. osclerosis. Circulation, 105, 1135–1143.
84. Kuo, C. C., Shor, A., Campbell, L. A., et al. (1993). Demonstration of 108. Bozkurt, B., Kribbs, S. B., Clubb, F. J., Jr., et al. (1998). Pathophysio-
Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. logically relevant concentrations of tumor necrosis factor-alpha promote
7
7
Journal of Infectious Diseases, 167, 841–849. progressive left ventricular dysfunction and remodeling in rats. Circula-
7
7
85. Schmitz, G., & Muller, G. (1991). Structure and function of lamellar tion, 97, 1382–1391.
bodies, lipid-protein complexes involved in storage and secretion of cel- 109. Kubota, T., McTiernan, C. F., Frye, C. S., et al. (1997). Dilated car-
lular lipids. Journal of Lipid Research, 32, 1539–1570. diomyopathy in transgenic mice with cardiac-specific overexpression of
86. Guyton, J. R., & Klemp, K. F. (1989). The lipid-rich core region of hu- tumor necrosis factor-alpha. Circulation Research, 81, 627–635.
man atherosclerotic fibrous plaques. Prevalence of small lipid droplets 110. Thaik, C. M., Calderone, A., Takahashi, N., et al. (1995). Interleukin-1
and vesicles by electron microscopy. American Journal of Pathology, 134, beta modulates the growth and phenotype of neonatal rat cardiac my-
4
4
6
6
705–717. ocytes. Journal of Clinical Investigations, 96, 1093–1099.
87. Guyton, J. R., & Klemp, K. F. (1994). Development of the atheroscle- 111. Seta, Y., Shan, K., Bozkurt, B., et al. (1996). Basic mechanisms in heart
rotic core region. Chemical and ultrastructural analysis of microdis- failure: The cytokine hypothesis. Journal of Cardiac Failure, 2, 243–249.
sected atherosclerotic lesions from human aorta. Arteriosclerosis and 112. Alexander, R. W. (1994). Inflammation and coronary artery disease.
Thrombosis, 14, 1305–1314. New England Journal of Medicine, 331, 468–469.
4
4
88. Schmidt, A., Yoshida, K., & Buddecke, E. (1992). The antiproliferative 113. Tateyama, H., Hino, J., Minamino, N., et al. (1990). Characterization
activity of arterial heparan sulfate resides in domains enriched with 2-O- of immunoreactive brain natriuretic peptide in human cardiac atrium.
7
7
sulfated uronic acid residues. Journal of Biological Chemistry, 267, Biochemical and Biophysical Research Communications, 166, 1080–1087.
6
6
19242–19247. 114. MacGregor, A. S., Price, J. F., Hau, C. M., et al. (1999). Role of systolic
89. Turnbull, J. E., Fernig, D. G., Ke, Y., et al. (1992). Identification of the blood pressure and plasma triglycerides in diabetic peripheral arterial
basic fibroblast growth factor binding sequence in fibroblast heparan sul- disease. The Edinburgh Artery Study. Diabetes Care, 22, 453–458.
7
fate. Journal of Biological Chemistry, 267, 10337–10341. 115. Hunt, P. J., Richards, A. M., Nicholls, M. G., et al. (1997). Immunore-
7
90. Tyrrell, D. J., Ishihara, M., Rao, N., et al. (1993). Structure and biolog- active amino-terminal pro-brain natriuretic peptide (NT-PROBNP): A
ical activities of a heparin-derived hexasaccharide with high affinity for new marker of cardiac impairment. Clinical Endocrinology (Oxford), 47,
7
7
basic fibroblast growth factor. Journal of Biological Chemistry, 268, 287–296.
4684–4689. 116. Dries, D. L., & Stevenson, L. W. (2000). Brain natriuretic peptide as
91. Parthasarathy, N., Goldberg, I. J., Sivaram, P., et al. (1994). Oligosac- bridge to therapy for heart failure. Lancet, 355, 1112–1113.
charide sequences of endothelial cell surface heparan sulfate proteogly- 117. McDonagh, T. A., Cunningham, A. D., Morrison, C. E., et al. (2001).
can with affinity for lipoprotein lipase. Journal of Biological Chemistry, Left ventricular dysfunction, natriuretic peptides, and mortality in an
6
6
269, 22391–22396. urban population. Heart, 86, 21–26.
92. Rosenberg, R. D., Jordan, R. E., Favreau, L. V., et al. (1979). Highly ac- 118. Richards, A. M., Nicholls, M. G., Yandle, T. G., et al. (1998). Plasma
tive heparin species with multiple binding sites for antithrombin. Bio- N-terminal pro-brain natriuretic peptide and adrenomedullin: New
6
chemical and Biophysical Research Communications, 86, 1319–1324. neurohormonal predictors of left ventricular function and prognosis af-
6
7
93. Rekhter, M. D., Zhang, K., Narayanan, A. S., et al. (1993). Type I col- ter myocardial infarction. Circulation, 97, 1921–1929.
7
lagen gene expression in human atherosclerosis. Localization to specific 119. Richards, A. M., Nicholls, M. G., Yandle, T. G., et al. (1999). Neu-
plaque regions. American Journal of Pathology, 143, 1634–1648. roendocrine prediction of left ventricular function and heart failure after
94. Morton, L. F., & Barnes, M. J. (1982). Collagen polymorphism in the acute myocardial infarction. The Christchurch Cardioendocrine Re-
normal and diseased blood vessel wall. Investigation of collagens types I, search Group. Heart, 81, 114–120.
III and V. Atherosclerosis, 42, 41–51. 120. de Lemos, J. A., Morrow, D. A., Bentley, J. H., et al. (2001). The prog-
95. Murata, K., Motayama, T., & Kotake, C. (1986). Collagen types in var- nostic value of B-type natriuretic peptide in patients with acute coronary
ious layers of the human aorta and their changes with the atherosclerotic syndromes. New England Journal of Medicine, 345, 1014–1021.
process. Atherosclerosis, 60, 251–262. 121. McDonagh, T. A., Robb, S. D., Murdoch, D. R., et al. (1998). Biochem-
96. Ooshima, A. (1981). Collagen alpha B chain: Increased proportion in ical detection of left-ventricular systolic dysfunction. Lancet, 351, 9–13.
human atherosclerosis. Science, 213, 666–668. 122. Troughton, R. W., Frampton, C. M., Yandle, T. G., et al. (2000). Treat-
97. Stenn, K. S., Madri, J. A., & Roll, F. J. (1979). Migrating epidermis pro- ment of heart failure guided by plasma aminoterminal brain natriuretic
duces AB2 collagen and requires continual collagen synthesis for move- peptide (N-BNP) concentrations. Lancet, 355, 1126–1130.
ment. Nature, 277, 229–232. 123. Wallen, T., Landahl, S., Hedner, T., et al. (1997). Brain natriuretic pep-
7
7
7
98. Chaudiere, J., Derouette, J. C., Mendy, F., et al. (1980). In vitro prepa- tide predicts mortality in the elderly. Heart, 77, 264–267.
7
ration of elastin–triglyceride complexes. Fatty acid uptake and modifi- 124. Cherian P., Hankey G. J., Eikelboom J. W., et al. (2003). Endothelial
cation of the susceptibility to elastase action. Atherosclerosis, 36, and platelet activation in acute ischemic stroke and its etiological sub-
6
6
183–194. types. Stroke, 34, 2132–2137.
99. Guantieri, V., Tamburro, A. M., & Gordini, D. D. (1983). Interactions 125. Jang, Y., Lincoff, A. M., Plow, E. F., et al. (1994). Cell adhesion mole-
of human and bovine elastins with lipids: Their proteolysis by elastase. cules in coronary artery disease. Journal of the American College of Car-
4
Connective Tissue Research, 12, 79–83. diology, 24, 1591–1601.
4
100. Bernier, F., Bakala, H., & Wallach, J. (1981). Effect of Mg2
and 126. Luscinskas, F. W., & Gimbrone, M. A., Jr. (1996). Endothelial-dependent
Ca2
on enzymatic elastolysis of insoluble elastin determined by a con- mechanisms in chronic inflammatory leukocyte recruitment. Annual
ductimetric method. Connective Tissue Research, 8, 71–75. Review of Medicine, 47, 413–421.
7
7
101. Senior, R. M., Griffin, G. L., & Mecham, R. P. (1980). Chemotactic ac- 127. Springer, T. A. (1995). Traffic signals on endothelium for lymphocyte re-
7
7
6
6
tivity of elastin-derived peptides. Journal of Clinical Investigations, 66, circulation and leukocyte emigration. Annual Review of Physiology, 57,
859–862. 827–872.

