Page 91 - Cardiac Nursing
P. 91
0
xd
xd
e 6
p
7 A
7 A
p
5:3
r
04
2-0
2-0
04
p
0/2
009
009
0/2
0
6/3
6/3
ta
ta
p
r
1
1
0
q
g
68.
q
g
Pa
e 6
g
68.
K34
0-c
LWBK340-c02_ p pp042-068.qxd 06/30/2009 15:33 Page 67 Aptara a a
K34
02_
q
0-c
02_
3
Pa
5:3
3
Pa
C HAPTER 2 / Systemic and Pulmonary Circulation and Oxygen Delivery 67
116. Lands, A. M., Arnold, A., McAuliff, J. P., et al. (1967). Differentiation 142. Starling, E. (1896). On the absorption of fluids from the connective tis-
4
4
of receptor systems activated by sympathomimetic amines. Nature, 214, sue spaces. Journal of Physiology (London), 19, 312–316.
597–598. 143. Landis, E. (1927). Micro-injection studies of capillary permeability II.
117. Queen, L. R., & Ferro, A. (2006). Beta-adrenergic receptors and nitric American Journal of Physiology, 82, 217–238.
oxide generation in the cardiovascular system. Cellular and Molecular 144. Renkin, E. (1986). Some consequences of capillary permeability to
Life Sciences, 63, 1070–1083. macromolecules: Starling’s hypothesis reconsidered. American Journal of
118. Sperelakis, N., Tohse, N., Ohya, Y., et al. (1994). Cyclic GMP regula- Physiology, 250, H706–H710.
tion of calcium slow channels in cardiac muscle and vascular smooth 145. Michel, C. (1997). Starling: The formulation of his hypothesis of mi-
muscle cells. Advances in Pharmacology, 26, 217–252. crovascular fluid exchange and its significance after 100 years. Experi-
119. Rozec, B., & Gauthier, C. (2006). Beta3-adrenoceptors in the cardio- mental Physiology, 82, 1–30.
vascular system: Putative roles in human pathologies. Pharmacologic 146. Levick, J. (1997). Fluid exchange across the endothelium. International
7
7
Therapeutics, 111, 652–673. Journal of Microcirculation and Clinical Experiences, 17, 241–247.
120. Treschan, T., & Peters, J. (2006). The vasopressin system: Physiology 147. Aukland, K., & Reed R. (1993). Interstitial-lymphatic mechanisms in
and clinical strategies. Anesthesiology, 105, 599–612. the control of extracellular fluid volume. Physiology in Review, 73, 1–78.
121. Barrett, L., Singer, M., & Clapp, L. (2007). Vasopressin: Mechanisms of 148. Weinbaum, S., Tarbell, J. M., & Damiano, E. R. (2007). The structure
action on the vasculature in health and septic shock. Critical Care Med- and function of the endothelial glycocalyx layer. Annual Review of Bio-
icine, 35, 33–40. medical Engineering, 9, 121–167.
122. Dellinger, R. P., Levy, M. M., Carlet, J. M., et al. (2008). Surviving Sep- 149. Hu, X., & Weinbaum, S. (1999). A new view of Starling’s Hypothesis at
sis campaign: International guidelines for management of severe sepsis the microstructural level. Microvascular Research, 58, 281–304.
6
6
and septic shock: 2008. Critical Care Medicine, 36, 296–327. 150. Pappenheimer, J. (1984). Contributions to microvascular research of Jean
123. Wenzel, V., & Lindner, K. H. (2002). Arginine vasopressin during car- Leonard Marie Poiseuille. In E. Renkin, & C. Michel (Eds.), Handbook
diopulmonary resuscitation: Laboratory evidence, clinical experience of physiology (pp. 1–10). Bethesda, MD: American Physiological Society.
and recommendations, and a view to the future. Critical Care Medicine, 151. Mellander, S. (1978). On the control of capillary fluid transfer by pre-
30, S157–S161. capillary and postcapillary vascular adjustment. Microvascular Research,
124. American Heart Association. (2005). American Heart Association 15, 319–330.
guidelines for cardiopulmonary resuscitation and emergency cardiovas- 152. Aukland, K., & Nicolaysen, G. (1981). Interstitial fluid volume: Local
cular care. Circulation, 112, IV1–IV203. regulatory mechanisms. Physiological Reviews, 61, 556–643.
125. Loscalzo, J., & Vita, J. (2000). Contemporary cardiology: Nitric oxide and 153. Lanne, T., & Lundvall, J. (1992). Mechanisms in man for rapid refill of
the cardiovascular system. Totowa, NJ: Humana Press. the circulatory system in hypovolaemia. Acta Physiologica Scandinavia,
126. Yao, X., & Huang, Y. (2003). From nitric oxide to endothelial cytosolic 146, 299–306.
6
6
Ca 2
: A negative feedback control. Trends in Pharmacological Science, 154. Olsen, H., Vernersson, E., & Lanne, T. (2000). Cardiovascular response
24, 263–266. to acute hypovolemia in relation to age. Implications for orthostasis and
4
4
127. Cohen, R. A., & Adachi, T. (2006). Nitric-oxide-induced vasodilatation: hemorrhage. American Journal of Physiology, 278, H222–H232.
Regulation by physiologic s-glutathiolation and pathologic oxidation of 155. Levick, J. (1991). Capillary filtration-absorption balance reconsidered in
the sarcoplasmic endoplasmic reticulum calcium ATPase. Trends in Car- light of dynamic extravascular factors. Experimental Physiology, 76, 825–857.
6
6
diovascular Medicine, 16, 109–114. 156. Lumb, A. (2005). Nunn’s applied respiratory physiology. Philadelphia:
6
6
128. Komalavilas, P., & Lincoln, T. (2000). Regulation of intracellular Ca
2 Elsevier.
by cyclic GMP-dependent protein kinase in vascular smooth muscle. In 157. Cooper, C. J., Landzberg, M. J., Anderson, T. J., et al. (1996). Role of
P. J. Kadowitz & D. McNamara (Eds.), Nitric oxide and the regulation of nitric oxide in the local regulation of pulmonary vascular resistance in
peripheral circulation (pp. 15–32). Boston: Birkhauser. humans. Circulation, 93, 266–271.
129. Berridge, M. J. (2008). Smooth muscle cell calcium activation mecha- 158. Ricciardolo, F. L., Sterk P. J., Gaston, B., et al. (2004). Nitric oxide in
4
nisms. Journal of Physiology, 95(11), 5165–5177. health and disease of the respiratory system. Physiology in Review, 84,
4
130. Somlyo, A. P., & Somlyo, A. V. (1994). Signal transduction and regula- 731–765.
tion in smooth muscle. Nature, 372, 231–236. 159. Brew, K. (2003). Structure of human ACE gives new insights into in-
131. Berridge, M. (2002). The endoplasmic reticulum: A multifunctional sig- hibitor binding and design. Trends in Pharmacological Science, 24,
nalling organelle. Cell Calcium, 32, 235–249. 391–394.
W
W
132. Patterson, A., Henrie-Olsen, J., & Brenner, R. (2002). Vasoregulation 160. Weinberger, S., Cockrill, B., & Mandel, J. (2008). Principles of pul-
at the molecular level: A role for the beta1 subunit of the calcium- monary medicine. Philadelphia: Saunders/Elsevier.
activated potassium (BK) channel. Trends in Cardiovascular Medicine, 161. West, J. (1963). Distribution of gas and blood in the normal lung.
W
W
12, 78–82. British Medical Bulletin, 19, 53–58.
4
133. Sheperd, J., & Vanhoutte, P. (1979). The human cardiovascular system. 162. Glenny, R. W. (1998). Blood flow distribution in the lung. Chest, 114,
4
Facts and concepts. New York: Raven Press. 8S–16S.
134. Christensen K. L., & Mulvany, M. J. (2001). Location of resistance ar- 163. Hlastala, M. P., & Glenny, R. W. (1999). Vascular structure determines
4
4
teries. Journal of Vascular Research, 38, 1–12. pulmonary blood flow distribution. News in Physiological Science, 14,
135. Duling, B. (1981). Coordination of microcirculatory function with oxy- 182–186.
gen demand in skeletal muscle. In A. Kovach, J. Hamar, & L. Szabo 164. Galvin, I., Drummond, G. B., & Nirmalan, M. (2007). Distribution of
(Eds.), Advances in physiology: Cardiovascular physiology: Microcirculation blood flow and ventilation in the lung: gravity is not the only factor.
and capillary exchange (pp. 1–16). Budapest: Akademiai Kaido. British Journal of Anaesthesia, 98, 420–428.
136. Duling, B. R., & Klitzman, B. (1980). Local control of microvascular 165. Glenny, R. (2008). Last word on Point:Counterpoint: Gravity is/is not
function: Role in tissue oxygen supply. Annual Review of Physiology, 42, the major factor determining the distribution of blood flow in the hu-
4
4
373–382. man lung. Journal of Applied Physiology, 104, 1540.
137. Scher, A. (1989). The veins and venous return. In H. Patton, A. Fuchs, 166. Hughes, M., & West, J. B. (2008). Last word on Point:Counterpoint:
& B. Hille (Eds.), Textbook of physiology (pp. 879–886). Philadelphia: Gravity is/is not the major factor determining the distribution of blood
4
4
WB Saunders. flow in the human lung. Journal of Applied Physiology, 104, 1539.
138. Hlastala, M., & Berger, A. (2001). Physiology of respiration. New York: 167. Michiels, C. (2004). Physiological and pathological responses to hy-
4
4
Oxford University Press. poxia. American Journal of Pathology, 164, 1875–1882.
139. Crone, E., & Levitt, D. (1984). Capillary permeability to small solutes. 168. Mauban, J. R., Remillard, C. V., & Yuan J. X. (2005). Hypoxic pul-
In E. Renkin & C. Michel (Eds.), Handbook of physiology (pp. 411–466). monary vasoconstriction: Role of ion channels. Journal of Applied
Bethesda, MD: American Physiological Society. Physiology, 98, 415–420.
140. Curry, R. (1984). Mechanics and thermodynamics of transcapillary ex- 169. Moudgil, R., Michelakis, E. D., & Archer, S. L. (2005). Hypoxic pul-
change. In E. Renkin & C. Michel (Eds.), Handbook of physiology (pp. monary vasoconstriction. Journal of Applied Physiology, 98, 390–403.
309–374). Bethesda, MD: American Physiological Society. 170. Aaronson, P. I., Robertson, T. P., Knock, G. A., et al. (2006). Hypoxic
141. Michel, C. (1996). Transport of macromolecules through microvascular pulmonary vasoconstriction: Mechanisms and controversies. Journal of
walls. Cardiovascular Research, 32, 644–653. Physiology, 570, 53–58.

