Page 1088 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1088

969.e2  Part VII  Hematologic Malignancies


            study of Nagasaki atomic bomb survivors. J Clin Oncol 29(4):428–434,   71.  Kelly  L,  Clark  J,  Gilliland  DG:  Comprehensive  genotypic  analysis
            2011.                                                 of  leukemia:  clinical  and  therapeutic  implications.  Curr  Opin  Oncol
         49.  Ben-Yehuda D, Krichevsky S, Caspi O, et al: Microsatellite instabil-  14(1):10–18, 2002.
            ity  and  p53  mutations  in  therapy-related  leukemia  suggest  mutator   72.  Anastasi J, Feng J, Le Beau MM, et al: Cytogenetic clonality in myelo-
            phenotype. Blood 88(11):4296–4303, 1996.              dysplastic syndromes studied with fluorescence in situ hybridization:
         50.  Pedersen-Bjergaard J, Philip P, Larsen SO, et al: Chromosome aberra-  lineage, response to growth factor therapy, and clone expansion. Blood
            tions and prognostic factors in therapy-related myelodysplasia and acute   81(6):1580–1585, 1993.
            nonlymphocytic leukemia. Blood 76(6):1083–1091, 1990.  73.  Gondek  LP,  Tiu  R,  O’Keefe  CL,  et al:  Chromosomal  lesions  and
         51.  Karp JE, Sarkodee-Adoo CB: Therapy-related acute leukemia. Clin Lab   uniparental  disomy  detected  by  SNP  arrays  in  MDS,  MDS/MPD,
            Med 20(1):71–81, ix, 2000.                            and MDS-derived AML. Blood 111(3):1534–1542, 2008.
         52.  Curtis  RE,  Boice  JD,  Stovall  M,  et al:  Risk  of  leukemia  after  che-  74.  Damm F, Fontenay M, Bernard OA: Point mutations in myelodysplas-
            motherapy  and  radiation  treatment  for  breast  cancer.  N  Engl  J  Med   tic syndromes. N Engl J Med 365(12):1154–1155, author reply 155,
            326(26):1745–1751, 1992.                              2011.
         53.  Christiansen DH, Andersen MK, Pedersen-Bjergaard J: Mutations with   75.  Bravo  GM,  Lee  E,  Merchan  B,  et al:  Integrating  genetics  and  epi-
            loss of heterozygosity of p53 are common in therapy-related myelodys-  genetics in myelodysplastic syndromes: advances in pathogenesis and
            plasia and acute myeloid leukemia after exposure to alkylating agents   disease evolution. Br J Haematol 166(5):646–659, 2014.
            and  significantly  associated  with  deletion  or  loss  of  5q,  a  complex   76.  Welch JS, Ley TJ, Link DC, et al: The origin and evolution of muta-
            karyotype, and a poor prognosis. J Clin Oncol 19(5):1405–1413, 2001.  tions in acute myeloid leukemia. Cell 150(2):264–278, 2012.
         54.  Super  HJ,  McCabe  NR, Thirman  MJ,  et al:  Rearrangements  of  the   77.  Vogelstein B, Papadopoulos N, Velculescu VE, et al: Cancer genome
            MLL  gene  in  therapy-related  acute  myeloid  leukemia  in  patients   landscapes. Science 339(6127):1546–1558, 2013.
            previously treated with agents targeting DNA-topoisomerase II. Blood   78.  Papaemmanuil E, Gerstung M, Malcovati L, et al: Clinical and bio-
            82(12):3705–3711, 1993.                               logical implications of driver mutations in myelodysplastic syndromes.
         55.  Nimer SD: MDS: a stem cell disorder—but what exactly is wrong with   Blood 122(22):3616–3627, quiz 3699, 2013.
            the primitive hematopoietic cells in this disease? Hematology Am Soc   79.  Bejar R, Stevenson K, Abdel-Wahab O, et al: Clinical effect of point
            Hematol Educ Program 2008(1):43–51, 2008.             mutations in myelodysplastic syndromes. N Engl J Med 364(26):2496–
         56.  Pang WW, Pluvinage JV, Price EA, et al: Hematopoietic stem cell and   2506, 2011.
            progenitor  cell  mechanisms  in  myelodysplastic  syndromes.  Proc  Natl   80.  Haferlach  T,  Nagata  Y,  Grossmann  V,  et al:  Landscape  of  genetic
            Acad Sci USA 110(8):3011–3016, 2013.                  lesions  in  944  patients  with  myelodysplastic  syndromes.  Leukemia
         57.  Janssen  JW,  Buschle  M,  Layton  M,  et al:  Clonal  analysis  of  myelo-  28(2):241–247, 2014.
            dysplastic syndromes: evidence of multipotent stem cell origin. Blood   81.  Malcovati L, Papaemmanuil E, Ambaglio I: Driver somatic mutations
            73(1):248–254, 1989.                                  identify distinct disease entities within myeloid neoplasms with myelo-
         58.  Walter MJ, Shen D, Ding L, et al: Clonal architecture of secondary   dysplasia. Blood 124:1513–1521, 2014.
            acute myeloid leukemia. N Engl J Med 366(12):1090–1098, 2012.  82.  Lindsley  RC,  Ebert  BL: The  biology  and  clinical  impact  of  genetic
         59.  Magee  JA,  Piskounova  E,  Morrison  SJ:  Cancer  stem  cells:  impact,   lesions in myeloid malignancies. Blood 122(23):3741–3748, 2013.
            heterogeneity, and uncertainty. Cancer Cell 21(3):283–296, 2012.  83.  Yoshida K, Sanada M, Shiraishi Y, et al: Frequent pathway mutations
         60.  Clevers H: The cancer stem cell: premises, promises and challenges. Nat   of  splicing  machinery  in  myelodysplasia.  Nature  478(7367):64–69,
            Med 313–319, 2011.                                    2011.
         61.  Thanopoulou E: Engraftment of NOD/SCID- 2 microglobulin null   84.  Je EM, Yoo NJ, Kim YJ, et al: Mutational analysis of splicing machinery
            mice with multilineage neoplastic cells from patients with myelodys-  genes SF3B1, U2AF1 and SRSF2 in myelodysplasia and other common
            plastic syndrome. Blood 103(11):4285–4293, 2004.      tumors. Int J Cancer 133(1):260–265, 2013.
         62.  Gerritsen WR, Donohue J, Bauman J, et al: Clonal analysis of myelo-  85.  Boultwood  J,  Dolatshad  H,  Varanasi  SS,  et al: The  role  of  splicing
            dysplastic syndrome: monosomy 7 is expressed in the myeloid lineage,   factor mutations in the pathogenesis of the myelodysplastic syndromes.
            but  not  in  the  lymphoid  lineage  as  detected  by  fluorescent  in  situ   Adv Biol Regul 54:153–161, 2014.
            hybridization. Blood 80(1):217–224, 1992.          86.  Visconte V, Rogers HJ, Singh J, et al: SF3B1 haploinsufficiency leads
         63.  White N, Nacheva E, Asimakopoulous F, et al: Deletion of chromo-  to formation of ring sideroblasts in myelodysplastic syndromes. Blood
            some 20q can occur in a multipotent precursor of both myeloid cells   120(16):3173–3186, 2012.
            and B cells. Blood 83(10):2809–2816, 1994.         87.  Malcovati  L,  Karimi  M,  Papaemmanuil  E,  et al:  SF3B1  mutation
         64.  Woll PS, Kjällquist U, Chowdhury O, et al: Myelodysplastic syndromes   identifies  a  distinct  subset  of  myelodysplastic  syndrome  with  ring
            are propagated by rare and distinct human cancer stem cells in vivo.   sideroblasts. Blood 126(2):233–241, 2015.
            Cancer Cell 25(6):794–808, 2014.                   88.  Papaemmanuil  E,  Cazzola  M,  Boultwood  J,  et al:  Somatic  SF3B1
         65.  Will B, Zhou L, Vogler TO, et al: Stem and progenitor cells in myelo-  mutation  in  myelodysplasia  with  ring  sideroblasts.  N  Engl  J  Med
            dysplastic syndromes show aberrant stage-specific expansion and harbor   365(15):1384–1395, 2011.
            genetic and epigenetic alterations. Blood 120(10):2076–2086, 2012.  89.  Damm F, Thol F, Kosmider O, et al: SF3B1 mutations in myelodys-
         66.  Jaiswal S, Ebert BL: MDS is a stem cell disorder after all. Cancer Cell   plastic  syndromes:  clinical  associations  and  prognostic  implications.
            25(6):713–714, 2014.                                  Leukemia 26(5):1137–1140, 2012.
         67.  Corces-Zimmerman MR, Hong W-J, Weissman IL, et al: Preleukemic   90.  Malcovati L, Papaemmanuil E, Bowen DT, et al: Clinical significance of
            mutations in human acute myeloid leukemia affect epigenetic regulators   SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/
            and persist in remission. Proc Natl Acad Sci USA 111(7):2548–2553,   myeloproliferative neoplasms. Blood 118(24):6239–6246, 2011.
            2014.                                              91.  Thol F, Kade S, Schlarmann C, et al: Frequency and prognostic impact
         68.  Chao MP, Seita J, Weissman IL: Establishment of a normal hematopoi-  of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelo-
            etic and leukemia stem cell hierarchy [Internet]. In Cold Spring Harbor   dysplastic syndromes. Blood 119(15):3578–3584, 2012.
            symposia on quantitative biology, 2008, Cold Spring Harbor Laboratory   92.  Meggendorfer  M,  Roller  A,  Haferlach T,  et al:  SRSF2  mutations  in
            Press  [cited  2014  Dec  31].  p.  sqb  –  2008.  Available  from::  <http://  275  cases  with  chronic  myelomonocytic  leukemia  (CMML).  Blood
            symposium.cshlp.org/content/early/2008/11/06/sqb.2008.73.031   120(15):3080–3088, 2012.
            .short>.                                           93.  Wu S-J, Kuo Y-Y, Hou H-A, et al: The clinical implication of SRSF2
         69.  Bejar R, Levine R, Ebert BL: Unraveling the molecular pathophysiology   mutation in patients with myelodysplastic syndrome and its stability
            of myelodysplastic syndromes. J Clin Oncol 29(5):504–515, 2011.  during disease evolution. Blood 120(15):3106–3111, 2012.
         70.  Jacobs RH, Cornbleet MA, Vardiman JW, et al: Prognostic implications   94.  Graubert  T,  Shen  D,  Ding  L:  Recurrent  mutations  in  the  U2AF1
            of morphology and karyotype in primary myelodysplastic syndromes.   splicing factor in myelodysplastic syndromes. Nat Genet 44(1):53–U77,
            Blood 67(6):1765–1772, 1986.                          2012.
   1083   1084   1085   1086   1087   1088   1089   1090   1091   1092   1093