Page 1088 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1088
969.e2 Part VII Hematologic Malignancies
study of Nagasaki atomic bomb survivors. J Clin Oncol 29(4):428–434, 71. Kelly L, Clark J, Gilliland DG: Comprehensive genotypic analysis
2011. of leukemia: clinical and therapeutic implications. Curr Opin Oncol
49. Ben-Yehuda D, Krichevsky S, Caspi O, et al: Microsatellite instabil- 14(1):10–18, 2002.
ity and p53 mutations in therapy-related leukemia suggest mutator 72. Anastasi J, Feng J, Le Beau MM, et al: Cytogenetic clonality in myelo-
phenotype. Blood 88(11):4296–4303, 1996. dysplastic syndromes studied with fluorescence in situ hybridization:
50. Pedersen-Bjergaard J, Philip P, Larsen SO, et al: Chromosome aberra- lineage, response to growth factor therapy, and clone expansion. Blood
tions and prognostic factors in therapy-related myelodysplasia and acute 81(6):1580–1585, 1993.
nonlymphocytic leukemia. Blood 76(6):1083–1091, 1990. 73. Gondek LP, Tiu R, O’Keefe CL, et al: Chromosomal lesions and
51. Karp JE, Sarkodee-Adoo CB: Therapy-related acute leukemia. Clin Lab uniparental disomy detected by SNP arrays in MDS, MDS/MPD,
Med 20(1):71–81, ix, 2000. and MDS-derived AML. Blood 111(3):1534–1542, 2008.
52. Curtis RE, Boice JD, Stovall M, et al: Risk of leukemia after che- 74. Damm F, Fontenay M, Bernard OA: Point mutations in myelodysplas-
motherapy and radiation treatment for breast cancer. N Engl J Med tic syndromes. N Engl J Med 365(12):1154–1155, author reply 155,
326(26):1745–1751, 1992. 2011.
53. Christiansen DH, Andersen MK, Pedersen-Bjergaard J: Mutations with 75. Bravo GM, Lee E, Merchan B, et al: Integrating genetics and epi-
loss of heterozygosity of p53 are common in therapy-related myelodys- genetics in myelodysplastic syndromes: advances in pathogenesis and
plasia and acute myeloid leukemia after exposure to alkylating agents disease evolution. Br J Haematol 166(5):646–659, 2014.
and significantly associated with deletion or loss of 5q, a complex 76. Welch JS, Ley TJ, Link DC, et al: The origin and evolution of muta-
karyotype, and a poor prognosis. J Clin Oncol 19(5):1405–1413, 2001. tions in acute myeloid leukemia. Cell 150(2):264–278, 2012.
54. Super HJ, McCabe NR, Thirman MJ, et al: Rearrangements of the 77. Vogelstein B, Papadopoulos N, Velculescu VE, et al: Cancer genome
MLL gene in therapy-related acute myeloid leukemia in patients landscapes. Science 339(6127):1546–1558, 2013.
previously treated with agents targeting DNA-topoisomerase II. Blood 78. Papaemmanuil E, Gerstung M, Malcovati L, et al: Clinical and bio-
82(12):3705–3711, 1993. logical implications of driver mutations in myelodysplastic syndromes.
55. Nimer SD: MDS: a stem cell disorder—but what exactly is wrong with Blood 122(22):3616–3627, quiz 3699, 2013.
the primitive hematopoietic cells in this disease? Hematology Am Soc 79. Bejar R, Stevenson K, Abdel-Wahab O, et al: Clinical effect of point
Hematol Educ Program 2008(1):43–51, 2008. mutations in myelodysplastic syndromes. N Engl J Med 364(26):2496–
56. Pang WW, Pluvinage JV, Price EA, et al: Hematopoietic stem cell and 2506, 2011.
progenitor cell mechanisms in myelodysplastic syndromes. Proc Natl 80. Haferlach T, Nagata Y, Grossmann V, et al: Landscape of genetic
Acad Sci USA 110(8):3011–3016, 2013. lesions in 944 patients with myelodysplastic syndromes. Leukemia
57. Janssen JW, Buschle M, Layton M, et al: Clonal analysis of myelo- 28(2):241–247, 2014.
dysplastic syndromes: evidence of multipotent stem cell origin. Blood 81. Malcovati L, Papaemmanuil E, Ambaglio I: Driver somatic mutations
73(1):248–254, 1989. identify distinct disease entities within myeloid neoplasms with myelo-
58. Walter MJ, Shen D, Ding L, et al: Clonal architecture of secondary dysplasia. Blood 124:1513–1521, 2014.
acute myeloid leukemia. N Engl J Med 366(12):1090–1098, 2012. 82. Lindsley RC, Ebert BL: The biology and clinical impact of genetic
59. Magee JA, Piskounova E, Morrison SJ: Cancer stem cells: impact, lesions in myeloid malignancies. Blood 122(23):3741–3748, 2013.
heterogeneity, and uncertainty. Cancer Cell 21(3):283–296, 2012. 83. Yoshida K, Sanada M, Shiraishi Y, et al: Frequent pathway mutations
60. Clevers H: The cancer stem cell: premises, promises and challenges. Nat of splicing machinery in myelodysplasia. Nature 478(7367):64–69,
Med 313–319, 2011. 2011.
61. Thanopoulou E: Engraftment of NOD/SCID- 2 microglobulin null 84. Je EM, Yoo NJ, Kim YJ, et al: Mutational analysis of splicing machinery
mice with multilineage neoplastic cells from patients with myelodys- genes SF3B1, U2AF1 and SRSF2 in myelodysplasia and other common
plastic syndrome. Blood 103(11):4285–4293, 2004. tumors. Int J Cancer 133(1):260–265, 2013.
62. Gerritsen WR, Donohue J, Bauman J, et al: Clonal analysis of myelo- 85. Boultwood J, Dolatshad H, Varanasi SS, et al: The role of splicing
dysplastic syndrome: monosomy 7 is expressed in the myeloid lineage, factor mutations in the pathogenesis of the myelodysplastic syndromes.
but not in the lymphoid lineage as detected by fluorescent in situ Adv Biol Regul 54:153–161, 2014.
hybridization. Blood 80(1):217–224, 1992. 86. Visconte V, Rogers HJ, Singh J, et al: SF3B1 haploinsufficiency leads
63. White N, Nacheva E, Asimakopoulous F, et al: Deletion of chromo- to formation of ring sideroblasts in myelodysplastic syndromes. Blood
some 20q can occur in a multipotent precursor of both myeloid cells 120(16):3173–3186, 2012.
and B cells. Blood 83(10):2809–2816, 1994. 87. Malcovati L, Karimi M, Papaemmanuil E, et al: SF3B1 mutation
64. Woll PS, Kjällquist U, Chowdhury O, et al: Myelodysplastic syndromes identifies a distinct subset of myelodysplastic syndrome with ring
are propagated by rare and distinct human cancer stem cells in vivo. sideroblasts. Blood 126(2):233–241, 2015.
Cancer Cell 25(6):794–808, 2014. 88. Papaemmanuil E, Cazzola M, Boultwood J, et al: Somatic SF3B1
65. Will B, Zhou L, Vogler TO, et al: Stem and progenitor cells in myelo- mutation in myelodysplasia with ring sideroblasts. N Engl J Med
dysplastic syndromes show aberrant stage-specific expansion and harbor 365(15):1384–1395, 2011.
genetic and epigenetic alterations. Blood 120(10):2076–2086, 2012. 89. Damm F, Thol F, Kosmider O, et al: SF3B1 mutations in myelodys-
66. Jaiswal S, Ebert BL: MDS is a stem cell disorder after all. Cancer Cell plastic syndromes: clinical associations and prognostic implications.
25(6):713–714, 2014. Leukemia 26(5):1137–1140, 2012.
67. Corces-Zimmerman MR, Hong W-J, Weissman IL, et al: Preleukemic 90. Malcovati L, Papaemmanuil E, Bowen DT, et al: Clinical significance of
mutations in human acute myeloid leukemia affect epigenetic regulators SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/
and persist in remission. Proc Natl Acad Sci USA 111(7):2548–2553, myeloproliferative neoplasms. Blood 118(24):6239–6246, 2011.
2014. 91. Thol F, Kade S, Schlarmann C, et al: Frequency and prognostic impact
68. Chao MP, Seita J, Weissman IL: Establishment of a normal hematopoi- of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelo-
etic and leukemia stem cell hierarchy [Internet]. In Cold Spring Harbor dysplastic syndromes. Blood 119(15):3578–3584, 2012.
symposia on quantitative biology, 2008, Cold Spring Harbor Laboratory 92. Meggendorfer M, Roller A, Haferlach T, et al: SRSF2 mutations in
Press [cited 2014 Dec 31]. p. sqb – 2008. Available from:: <http:// 275 cases with chronic myelomonocytic leukemia (CMML). Blood
symposium.cshlp.org/content/early/2008/11/06/sqb.2008.73.031 120(15):3080–3088, 2012.
.short>. 93. Wu S-J, Kuo Y-Y, Hou H-A, et al: The clinical implication of SRSF2
69. Bejar R, Levine R, Ebert BL: Unraveling the molecular pathophysiology mutation in patients with myelodysplastic syndrome and its stability
of myelodysplastic syndromes. J Clin Oncol 29(5):504–515, 2011. during disease evolution. Blood 120(15):3106–3111, 2012.
70. Jacobs RH, Cornbleet MA, Vardiman JW, et al: Prognostic implications 94. Graubert T, Shen D, Ding L: Recurrent mutations in the U2AF1
of morphology and karyotype in primary myelodysplastic syndromes. splicing factor in myelodysplastic syndromes. Nat Genet 44(1):53–U77,
Blood 67(6):1765–1772, 1986. 2012.

