Page 1090 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1090

969.e4  Part VII  Hematologic Malignancies


        141.  Hyde RK, Liu PP: GATA2 mutations lead to MDS and AML. Nat   163.  Christiansen  DH,  Andersen  MK,  Desta  F,  et al:  Mutations  of  genes
            Genet 43(10):926–927, 2011.                           in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction
        142.  Ostergaard P, Simpson MA, Connell FC, et al: Mutations in GATA2   pathway in therapy-related myelodysplasia and acute myeloid leukemia.
            cause primary lymphedema associated with a predisposition to acute   Leukemia 19(12):2232–2240, 2005.
            myeloid leukemia (Emberger syndrome). Nat Genet 43(10):929–931,   164.  Score  J,  Hidalgo-Curtis  C,  Jones  AV,  et al:  Inactivation  of  poly-
            2011.                                                 comb  repressive  complex  2  components  in  myeloproliferative  and
        143.  Hsu AP, Sampaio EP, Khan J, et al: Mutations in GATA2 are associated   myelodysplastic/myeloproliferative  neoplasms.  Blood  119(5):1208–
            with the autosomal dominant and sporadic monocytopenia and myco-  1213, 2012.
            bacterial infection (MonoMAC) syndrome. Blood 118(10):2653–2655,   165.  Makishima H, Cazzolli H, Szpurka H, et al: Mutations of e3 ubiquitin
            2011.                                                 ligase cbl family members constitute a novel common pathogenic lesion
        144.  Dickinson RE, Griffin H, Bigley V, et al: Exome sequencing identifies   in myeloid malignancies. J Clin Oncol 27(36):6109–6116, 2009.
            GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK   166.  Di Giacomo D, Lema Fernandez AG, Pierini T, et al: The GNAS1 gene
            lymphoid deficiency. Blood 118(10):2656–2658, 2011.   in myelodysplastic syndromes (MDS). Leuk Res 38(7):804–807, 2014.
        145.  Dickinson  RE,  Milne  P,  Jardine  L,  et al:  The  evolution  of  cellular   167.  Yoda  A, Adelmant  G, Tamburini J,  et al: Mutations in G protein  β
            deficiency in GATA2 mutation. Blood 123(6):863–874, 2014.  subunits promote transformation and kinase inhibitor resistance. Nat
        146.  Micol  J-B,  Abdel-Wahab  O:  Collaborating  constitutive  and  somatic   Med 21(1):71–75, 2014.
            genetic events in myeloid malignancies: ASXL1 mutations in patients   168.  Jankowska  AM,  Gondek  LP,  Szpurka  H,  et al:  Base  excision  repair
            with germline GATA2 mutations. Haematologica 99(2):201–203, 2014.  dysfunction in a subgroup of patients with myelodysplastic syndrome.
        147.  Kaneko H, Misawa S, Horiike S, et al: TP53 mutations emerge at early   Leukemia 22(3):551–558, 2008.
            phase  of  myelodysplastic  syndrome  and  are  associated  with  complex   169.  Kawankar N, Vundinti BR: Cytogenetic abnormalities in myelodysplas-
            chromosomal abnormalities. Blood 85(8):2189–2193, 1995.  tic syndrome: an overview. Hematology 16(3):131–138, 2011.
        148.  Lindsley RC, Mar BG, Mazzola E, et al: Acute myeloid leukemia ontog-  170.  Swerdlow S, Campo E, Harris N, et al WHO Classification of Tumours
            eny is defined by distinct somatic mutations. Blood 125:1367–1376,   of  Haematopoietic  and  Lymphoid Tissue  (IARC WHO  Classification  of
            2015.                                                 Tumours). 4th ed. 2008.
        149.  Jadersten M, Saft L, Smith A: TP53 mutations in low-risk myelodys-  171.  Ebert BL: Molecular dissection of the 5q deletion in myelodysplastic
            plastic syndromes with del(5q) predict disease progression. J Clin Oncol   syndrome. Semin Oncol 38(5):621–626, 2011.
            29(15):1971–1979, 2011.                           172.  Pedersen  B:  Anatomy  of  the  5q-  deletion:  different  sex  ratios  and
        150.  Wong TN, Ramsingh G, Young AL, et al: Role of TP53 mutations in   deleted  5q  bands  in  MDS  and  AML.  Leukemia  10(12):1883–1890,
            the origin and evolution of therapy-related acute myeloid leukaemia.   1996.
            Nature 518:552–555, 2014.                         173.  List A, Dewald G, Bennett J, et al: Lenalidomide in the myelodysplastic
        151.  Kottaridis  PD,  Gale  RE,  Frew  ME,  et al:  The  presence  of  a  FLT3   syndrome with chromosome 5q deletion. N Engl J Med 355(14):1456–
            internal tandem duplication in patients with acute myeloid leukemia   1465, 2006.
            (AML)  adds  important  prognostic  information  to  cytogenetic  risk   174.  Boultwood  J,  Pellagatti  A,  Wainscoat  JS:  Haploinsufficiency  of
            group and response to the first cycle of chemotherapy: analysis of 854   ribosomal proteins and p53 activation in anemia: Diamond-Blackfan
            patients from the United Kingdom Medical Research Council AML 10   anemia and the 5q- syndrome. Adv Biol Regul 52(1):196–203, 2012.
            and 12 trials. Blood 98(6):1752–1759, 2001.       175.  Ebert BL, Pretz J, Bosco J, et al: Identification of RPS14 as a 5q- syn-
        152.  Kralovics R, Passamonti F, Buser AS, et al: A gain-of-function mutation   drome gene by RNA interference screen. Nature 451(7176):335–339,
            of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–  2008.
            1790, 2005.                                       176.  Kumar MS, Narla A, Nonami A, et al: Coordinate loss of a microRNA
        153.  Pardanani AD, Levine RL, Lasho T, et al: MPL515 mutations in myelo-  and protein-coding gene cooperate in the pathogenesis of 5q- syndrome.
            proliferative  and  other  myeloid  disorders:  a  study  of  1182  patients.   Blood 118(17):4666–4673, 2011.
            Blood 108(10):3472–3476, 2006.                    177.  Schneider  RK,  Ademà V,  Heckl  D,  et al:  Role  of  casein  kinase  1A1
        154.  Furitsu T, Tsujimura T, Tono T, et al: Identification of mutations in   in  the  biology  and  targeted  therapy  of  del(5q)  MDS.  Cancer  Cell
            the  coding  sequence  of  the  proto-oncogene  c-kit  in  a  human  mast   26(4):509–520, 2014.
            cell leukemia cell line causing ligand-independent activation of c-kit   178.  Stoddart A, Fernald AA, Wang J, et al: Haploinsufficiency of del(5q)
            product. J Clin Invest 92(4):1736–1744, 1993.         genes, Egr1 and Apc, cooperate with Tp53 loss to induce acute myeloid
        155.  Bains  A,  Luthra  R,  Medeiros  LJ,  et al:  FLT3  and  NPM1  mutations   leukemia in mice. Blood 123(7):1069–1078, 2014.
            in  myelodysplastic  syndromes:  Frequency  and  potential  value  for   179.  Chen  TH-P,  Kambal  A,  Krysiak  K,  et al:  Knockdown  of  Hspa9,  a
            predicting  progression  to  acute  myeloid  leukemia.  Am  J  Clin  Pathol   del(5q31.2) gene, results in a decrease in hematopoietic progenitors in
            135(1):62–69, 2011.                                   mice. Blood 117(5):1530–1539, 2011.
        156.  Gallagher  A,  Darley  R,  Padua  RA:  RAS  and  the  myelodysplastic   180.  Sportoletti P, Grisendi S, Majid SM, et al: Npm1 is a haploinsufficient
            syndromes. Pathol Biol (Paris) 45(7):561–568, 1997.   suppressor of myeloid and lymphoid malignancies in the mouse. Blood
        157.  Side LE, Curtiss NP, Teel K, et al: RAS, FLT3, and TP53 mutations   111(7):3859–3862, 2008.
            in therapy-related myeloid malignancies with abnormalities of chromo-  181.  Horrigan  SK,  Arbieva  ZH,  Xie  HY,  et al:  Delineation  of  a  minimal
            somes 5 and 7. Genes Chromosomes Cancer 39(3):217–223, 2004.  interval and identification of 9 candidates for a tumor suppressor gene
        158.  Steensma DP, Dewald GW, Lasho TL, et al: The JAK2 V617F activat-  in  malignant  myeloid  disorders  on  5q31.  Blood  95(7):2372–2377,
            ing tyrosine kinase mutation is an infrequent event in both “atypical”   2000.
            myeloproliferative  disorders  and  myelodysplastic  syndromes.  Blood   182.  Ebert  BL:  Genetic  deletions  in  AML  and  MDS.  Best  Pract  Res  Clin
            106(4):1207–1209, 2005.                               Haematol 23(4):457–461, 2010.
        159.  Hellstrom-Lindberg  E,  Cazzola  M:  The  role  of  JAK2  mutations  in   183.  Kere J, Ruutu T, la Chapelle A: de. Monosomy 7 in granulocytes and
            RARS  and  other  MDS.  Hematology  Am  Soc  Hematol  Educ  Program   monocytes in myelodysplastic syndrome. N Engl J Med 316(9):499–503,
            52–59, 2008.                                          1987.
        160.  Kon A, Shih L-Y, Minamino M, et al: Recurrent mutations in multiple   184.  Wong CC, Martincorena I, Rust AG, et al: Inactivating CUX1 muta-
            components of the cohesin complex in myeloid neoplasms. Nat Genet   tions promote tumorigenesis. Nat Genet 46(1):33–38, 2014.
            45(10):1232–1237, 2013.                           185.  Le Beau M, Espinosa R, 3rd, Davis E, et al: Cytogenetic and molecular
        161.  Thota  S,  Viny  A,  Makishima  H:  Genetic  alterations  of  the  cohesin   delineation of a region of chromosome 7 commonly deleted in malig-
            complex genes in myeloid malignancies. Blood 8:2014–2024, 2014.  nant myeloid diseases. Blood 88:1930–1935, 1996.
        162.  Tartaglia  M,  Niemeyer  CM,  Fragale  A,  et al:  Somatic  mutations  in   186.  Cordoba I, González-Porras JR, Nomdedeu B, et al: Better prognosis
            PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syn-  for patients with del(7q) than for patients with monosomy 7 in myelo-
            dromes and acute myeloid leukemia. Nat Genet 34(2):148–150, 2003.  dysplastic syndrome. Cancer 118(1):127–133, 2012.
   1085   1086   1087   1088   1089   1090   1091   1092   1093   1094   1095