Page 1089 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1089

Chapter 60  Myelodysplastic Syndromes  969.e3


             95.  Okeyo-Owuor  T,  White  BS,  Chatrikhi  R,  et al:  U2AF1  mutations   120.  Wang J, Ai X, Gale RP, et al: TET2, ASXL1 and EZH2 mutations in
                alter sequence specificity of pre-mRNA binding and splicing. Leukemia   Chinese  with  myelodysplastic  syndromes.  Leuk  Res  37(3):305–311,
                2014.                                                 2013.
             96.  Wu  S-J,  Tang  J-L,  Lin  C-T,  et al:  Clinical  implications  of  U2AF1   121.  Ezhkova E, Pasolli HA, Parker JS, et al: Ezh2 orchestrates gene expres-
                mutation in patients with myelodysplastic syndrome and its stability   sion  for  the  stepwise  differentiation  of  tissue-specific  stem  cells. Cell
                during disease progression. Am J Hematol 88(11):E277–E282, 2013.  136(6):1122–1135, 2009.
             97.  Langemeijer SMC, Kuiper RP, Berends M, et al: Acquired mutations   122.  Carey BW, Finley LWS, Cross JR, et al: Intracellular α-ketoglutarate
                in  TET2  are  common  in  myelodysplastic  syndromes.  Nat  Genet   maintains the pluripotency of embryonic stem cells. Nature 518:413–
                41(7):838–842, 2009.                                  416, 2015.
             98.  Kosmider  O,  Gelsi-Boyer V,  Ciudad  M,  et al: TET2  gene  mutation   123.  Wang X, Dai H, Wang Q, et al: EZH2 mutations are related to low
                is a frequent and adverse event in chronic myelomonocytic leukemia.   blast  percentage  in  bone  marrow  and  -7/del(7q)  in  de  novo  acute
                Haematologica 94(12):1676–1681, 2009.                 myeloid leukemia. PLoS ONE 8(4):e61341, 2013.
             99.  Nakajima H, Kunimoto H: TET2 as an epigenetic master regulator for   124.  Chen C, Liu Y, Rappaport AR, et al: MLL3 is a haploinsufficient 7q
                normal and malignant hematopoiesis. Cancer Sci 105(9):1093–1099,   tumor suppressor in acute myeloid leukemia. Cancer Cell 25(5):652–
                2014.                                                 665, 2014.
            100.  Wu H, Zhang Y: Mechanisms and functions of Tet protein-mediated   125.  Jankowska  AM,  Makishima  H,  Tiu  RV,  et al:  Mutational  spectrum
                5-methylcytosine oxidation. Genes Dev 25(23):2436–2452, 2011.  analysis  of  chronic  myelomonocytic  leukemia  includes  genes  associ-
            101.  Jankowska AM, Szpurka H, Tiu RV, et al: Loss of heterozygosity 4q24   ated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood
                and TET2 mutations associated with myelodysplastic/myeloproliferative   118(14):3932–3941, 2011.
                neoplasms. Blood 113(25):6403–6410, 2009.         126.  Ernst  T,  Chase  AJ,  Score  J,  et al:  Inactivating  mutations  of  the
            102.  Yamazaki J, Taby R, Vasanthakumar A, et al: Effects of TET2 mutations   histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet
                on DNA methylation in chronic myelomonocytic leukemia. Epigenetics   42(8):722–726, 2010.
                7(2):201–207, 2012.                               127.  Nikoloski G, Langemeijer SMC, Kuiper RP, et al: Somatic mutations
            103.  Bejar R, Lord A, Stevenson K, et al: TET2 mutations predict response   of the histone methyltransferase gene EZH2 in myelodysplastic syn-
                to hypomethylating agents in myelodysplastic syndrome patients. Blood   dromes. Nat Genet 42(8):665–667, 2010.
                124(17):2705–2712, 2014.                          128.  Losman  J-A,  Looper  RE,  Koivunen  P,  et al:  R)-2-hydroxyglutarate
            104.  Bejar R, Stevenson KE, Caughey B, et al: Somatic mutations predict   is sufficient to promote leukemogenesis and its effects are reversible.
                poor outcome in patients with myelodysplastic syndrome after hema-  Science 339(6127):1621–1625, 2013.
                topoietic  stem-cell  transplantation.  J  Clin  Oncol  32(25):2691–2698,   129.  Figueroa  ME,  Abdel-Wahab  O,  Lu  C,  et al:  Leukemic  IDH1  and
                2014.                                                 IDH2  mutations  result  in  a  hypermethylation  phenotype,  disrupt
            105.  Yang L, Rau R, Goodell MA: DNMT3A in haematological malignan-  TET2 function, and impair hematopoietic differentiation. Cancer Cell
                cies. Nat Rev Cancer 15(3):152–165, 2015.             18(6):553–567, 2010.
            106.  Ley  TJ,  Ding  L,  Walter  MJ,  et al:  DNMT3A  mutations  in  acute   130.  Ito  Y,  Bae  S-C,  Chuang  LSH:  The  RUNX  family:  developmental
                myeloid leukemia. N Engl J Med 363(25):2424–2433, 2010.  regulators in cancer. Nat Rev Cancer 15(2):81–95, 2015.
            107.  Russler-Germain  DA,  Spencer  DH,  Young  MA,  et al:  The  R882H   131.  Miyoshi H, Shimizu K, Kozu T, et al: t(8;21) breakpoints on chromo-
                DNMT3A mutation associated with AML dominantly inhibits wild-  some 21 in acute myeloid leukemia are clustered within a limited region
                type DNMT3A by blocking its ability to form active tetramers. Cancer   of a single gene, AML1. Proc Natl Acad Sci USA 88(23):10431–10434,
                Cell 25(4):442–454, 2014.                             1991.
            108.  Challen GA, Sun D, Jeong M, et al: Dnmt3a is essential for hemato-  132.  Golub TR, Barker GF, Bohlander SK, et al: Fusion of the TEL gene on
                poietic stem cell differentiation. Nat Genet 44(1):23–31, 2011.  12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia.
            109.  Mayle A, Yang L, Rodriguez B, et al: Dnmt3a loss predisposes murine   Proc Natl Acad Sci USA 92(11):4917–4921, 1995.
                hematopoietic stem cells to malignant transformation. Blood 2014.  133.  Harada  H,  Harada  Y,  Niimi  H,  et al:  High  incidence  of  somatic
            110.  Walter MJ, Ding L, Shen D, et al: Recurrent DNMT3A mutations in   mutations  in  the  AML1/RUNX1  gene  in  myelodysplastic  syndrome
                patients with myelodysplastic syndromes. Leukemia 25(7):1153–1158,   and low blast percentage myeloid leukemia with myelodysplasia. Blood
                2011.                                                 103(6):2316–2324, 2004.
            111.  Thol F, Winschel C, Lüdeking A, et al: Rare occurrence of DNMT3A   134.  Harada Y, Harada H: Molecular pathways mediating MDS/AML with
                mutations in myelodysplastic syndromes. Haematologica 96(12):1870–  focus on AML1/RUNX1 point mutations. J Cell Physiol 220(1):16–20,
                1873, 2011.                                           2009.
            112.  Bejar R, Stevenson KE, Caughey BA, et al: Validation of a prognostic   135.  Matsuura S, Komeno Y, Stevenson KE, et al: Expression of the runt
                model and the impact of mutations in patients with lower-risk myelo-  homology domain of RUNX1 disrupts homeostasis of hematopoietic
                dysplastic syndromes. J Clin Oncol 30(27):3376–3382, 2012.  stem cells and induces progression to myelodysplastic syndrome. Blood
            113.  Bejar R: Clinical and genetic predictors of prognosis in myelodysplastic   120(19):4028–4037, 2012.
                syndromes. Haematologica 99(6):956–964, 2014.     136.  Huang G, Zhao X, Wang L, et al: The ability of MLL to bind RUNX1
            114.  Gelsi-Boyer V, Trouplin V, Adélaïde J, et al: Mutations of polycomb-  and methylate H3K4 at PU. 1 regulatory regions is impaired by MDS/
                associated  gene  ASXL1  in  myelodysplastic  syndromes  and  chronic   AML-associated RUNX1/AML1 mutations. Blood 118(25):6544–6552,
                myelomonocytic leukaemia. Br J Haematol 145(6):788–800, 2009.  2011.
            115.  Fisher CL, Pineault N, Brookes C, et al: Loss-of-function additional sex   137.  Fears  S,  Gavin  M,  Zhang  DE,  et al:  Functional  characterization  of
                combs like 1 mutations disrupt hematopoiesis but do not cause severe   ETV6 and ETV6/CBFA2 in the regulation of the MCSFR proximal
                myelodysplasia or leukemia. Blood 115(1):38–46, 2010.  promoter. Proc Natl Acad Sci USA 94(5):1949–1954, 1997.
            116.  Abdel-Wahab O, Adli M, LaFave LM, et al: ASXL1 mutations promote   138.  Peeters P, Wlodarska I, Baens M, et al: Fusion of ETV6 to MDS1/EVI1
                myeloid transformation through loss of PRC2-mediated gene repres-  as a result of t(3;12)(q26;p13) in myeloproliferative disorders. Cancer
                sion. Cancer Cell 22(2):180–193, 2012.                Res 57(4):564–569, 1997.
            117.  Abdel-Wahab  O,  Gao  J,  Adli  M,  et al:  Deletion  of  Asxl1  results  in   139.  Wlodarska I, Selleri L, La Starza R, et al: Molecular cytogenetics local-
                myelodysplasia  and  severe  developmental  defects  in  vivo.  J  Exp  Med   izes two new breakpoints on 11q23.3 and 21q11.2 in myelodysplastic
                210(12):2641–2659, 2013.                              syndrome  with  t(11;21)  translocation.  Genes  Chromosomes  Cancer
            118.  Boultwood  J,  Perry  J,  Pellagatti  A,  et al:  Frequent  mutation  of  the   24(3):199–206, 1999.
                polycomb-associated  gene  ASXL1  in  the  myelodysplastic  syndromes   140.  Padron E, Yoder S, Kunigal S, et al: ETV6 and signaling gene muta-
                and in acute myeloid leukemia. Leukemia 24(5):1062–1065, 2010.  tions are associated with secondary transformation of myelodysplastic
            119.  Carbuccia N, Murati A, Trouplin V, et al: Mutations of ASXL1 gene   syndromes to chronic myelomonocytic leukemia. Blood 123(23):3675–
                in myeloproliferative neoplasms. Leukemia 23(11):2183–2186, 2009.  3677, 2014.
   1084   1085   1086   1087   1088   1089   1090   1091   1092   1093   1094