Page 1089 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1089
Chapter 60 Myelodysplastic Syndromes 969.e3
95. Okeyo-Owuor T, White BS, Chatrikhi R, et al: U2AF1 mutations 120. Wang J, Ai X, Gale RP, et al: TET2, ASXL1 and EZH2 mutations in
alter sequence specificity of pre-mRNA binding and splicing. Leukemia Chinese with myelodysplastic syndromes. Leuk Res 37(3):305–311,
2014. 2013.
96. Wu S-J, Tang J-L, Lin C-T, et al: Clinical implications of U2AF1 121. Ezhkova E, Pasolli HA, Parker JS, et al: Ezh2 orchestrates gene expres-
mutation in patients with myelodysplastic syndrome and its stability sion for the stepwise differentiation of tissue-specific stem cells. Cell
during disease progression. Am J Hematol 88(11):E277–E282, 2013. 136(6):1122–1135, 2009.
97. Langemeijer SMC, Kuiper RP, Berends M, et al: Acquired mutations 122. Carey BW, Finley LWS, Cross JR, et al: Intracellular α-ketoglutarate
in TET2 are common in myelodysplastic syndromes. Nat Genet maintains the pluripotency of embryonic stem cells. Nature 518:413–
41(7):838–842, 2009. 416, 2015.
98. Kosmider O, Gelsi-Boyer V, Ciudad M, et al: TET2 gene mutation 123. Wang X, Dai H, Wang Q, et al: EZH2 mutations are related to low
is a frequent and adverse event in chronic myelomonocytic leukemia. blast percentage in bone marrow and -7/del(7q) in de novo acute
Haematologica 94(12):1676–1681, 2009. myeloid leukemia. PLoS ONE 8(4):e61341, 2013.
99. Nakajima H, Kunimoto H: TET2 as an epigenetic master regulator for 124. Chen C, Liu Y, Rappaport AR, et al: MLL3 is a haploinsufficient 7q
normal and malignant hematopoiesis. Cancer Sci 105(9):1093–1099, tumor suppressor in acute myeloid leukemia. Cancer Cell 25(5):652–
2014. 665, 2014.
100. Wu H, Zhang Y: Mechanisms and functions of Tet protein-mediated 125. Jankowska AM, Makishima H, Tiu RV, et al: Mutational spectrum
5-methylcytosine oxidation. Genes Dev 25(23):2436–2452, 2011. analysis of chronic myelomonocytic leukemia includes genes associ-
101. Jankowska AM, Szpurka H, Tiu RV, et al: Loss of heterozygosity 4q24 ated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood
and TET2 mutations associated with myelodysplastic/myeloproliferative 118(14):3932–3941, 2011.
neoplasms. Blood 113(25):6403–6410, 2009. 126. Ernst T, Chase AJ, Score J, et al: Inactivating mutations of the
102. Yamazaki J, Taby R, Vasanthakumar A, et al: Effects of TET2 mutations histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet
on DNA methylation in chronic myelomonocytic leukemia. Epigenetics 42(8):722–726, 2010.
7(2):201–207, 2012. 127. Nikoloski G, Langemeijer SMC, Kuiper RP, et al: Somatic mutations
103. Bejar R, Lord A, Stevenson K, et al: TET2 mutations predict response of the histone methyltransferase gene EZH2 in myelodysplastic syn-
to hypomethylating agents in myelodysplastic syndrome patients. Blood dromes. Nat Genet 42(8):665–667, 2010.
124(17):2705–2712, 2014. 128. Losman J-A, Looper RE, Koivunen P, et al: R)-2-hydroxyglutarate
104. Bejar R, Stevenson KE, Caughey B, et al: Somatic mutations predict is sufficient to promote leukemogenesis and its effects are reversible.
poor outcome in patients with myelodysplastic syndrome after hema- Science 339(6127):1621–1625, 2013.
topoietic stem-cell transplantation. J Clin Oncol 32(25):2691–2698, 129. Figueroa ME, Abdel-Wahab O, Lu C, et al: Leukemic IDH1 and
2014. IDH2 mutations result in a hypermethylation phenotype, disrupt
105. Yang L, Rau R, Goodell MA: DNMT3A in haematological malignan- TET2 function, and impair hematopoietic differentiation. Cancer Cell
cies. Nat Rev Cancer 15(3):152–165, 2015. 18(6):553–567, 2010.
106. Ley TJ, Ding L, Walter MJ, et al: DNMT3A mutations in acute 130. Ito Y, Bae S-C, Chuang LSH: The RUNX family: developmental
myeloid leukemia. N Engl J Med 363(25):2424–2433, 2010. regulators in cancer. Nat Rev Cancer 15(2):81–95, 2015.
107. Russler-Germain DA, Spencer DH, Young MA, et al: The R882H 131. Miyoshi H, Shimizu K, Kozu T, et al: t(8;21) breakpoints on chromo-
DNMT3A mutation associated with AML dominantly inhibits wild- some 21 in acute myeloid leukemia are clustered within a limited region
type DNMT3A by blocking its ability to form active tetramers. Cancer of a single gene, AML1. Proc Natl Acad Sci USA 88(23):10431–10434,
Cell 25(4):442–454, 2014. 1991.
108. Challen GA, Sun D, Jeong M, et al: Dnmt3a is essential for hemato- 132. Golub TR, Barker GF, Bohlander SK, et al: Fusion of the TEL gene on
poietic stem cell differentiation. Nat Genet 44(1):23–31, 2011. 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia.
109. Mayle A, Yang L, Rodriguez B, et al: Dnmt3a loss predisposes murine Proc Natl Acad Sci USA 92(11):4917–4921, 1995.
hematopoietic stem cells to malignant transformation. Blood 2014. 133. Harada H, Harada Y, Niimi H, et al: High incidence of somatic
110. Walter MJ, Ding L, Shen D, et al: Recurrent DNMT3A mutations in mutations in the AML1/RUNX1 gene in myelodysplastic syndrome
patients with myelodysplastic syndromes. Leukemia 25(7):1153–1158, and low blast percentage myeloid leukemia with myelodysplasia. Blood
2011. 103(6):2316–2324, 2004.
111. Thol F, Winschel C, Lüdeking A, et al: Rare occurrence of DNMT3A 134. Harada Y, Harada H: Molecular pathways mediating MDS/AML with
mutations in myelodysplastic syndromes. Haematologica 96(12):1870– focus on AML1/RUNX1 point mutations. J Cell Physiol 220(1):16–20,
1873, 2011. 2009.
112. Bejar R, Stevenson KE, Caughey BA, et al: Validation of a prognostic 135. Matsuura S, Komeno Y, Stevenson KE, et al: Expression of the runt
model and the impact of mutations in patients with lower-risk myelo- homology domain of RUNX1 disrupts homeostasis of hematopoietic
dysplastic syndromes. J Clin Oncol 30(27):3376–3382, 2012. stem cells and induces progression to myelodysplastic syndrome. Blood
113. Bejar R: Clinical and genetic predictors of prognosis in myelodysplastic 120(19):4028–4037, 2012.
syndromes. Haematologica 99(6):956–964, 2014. 136. Huang G, Zhao X, Wang L, et al: The ability of MLL to bind RUNX1
114. Gelsi-Boyer V, Trouplin V, Adélaïde J, et al: Mutations of polycomb- and methylate H3K4 at PU. 1 regulatory regions is impaired by MDS/
associated gene ASXL1 in myelodysplastic syndromes and chronic AML-associated RUNX1/AML1 mutations. Blood 118(25):6544–6552,
myelomonocytic leukaemia. Br J Haematol 145(6):788–800, 2009. 2011.
115. Fisher CL, Pineault N, Brookes C, et al: Loss-of-function additional sex 137. Fears S, Gavin M, Zhang DE, et al: Functional characterization of
combs like 1 mutations disrupt hematopoiesis but do not cause severe ETV6 and ETV6/CBFA2 in the regulation of the MCSFR proximal
myelodysplasia or leukemia. Blood 115(1):38–46, 2010. promoter. Proc Natl Acad Sci USA 94(5):1949–1954, 1997.
116. Abdel-Wahab O, Adli M, LaFave LM, et al: ASXL1 mutations promote 138. Peeters P, Wlodarska I, Baens M, et al: Fusion of ETV6 to MDS1/EVI1
myeloid transformation through loss of PRC2-mediated gene repres- as a result of t(3;12)(q26;p13) in myeloproliferative disorders. Cancer
sion. Cancer Cell 22(2):180–193, 2012. Res 57(4):564–569, 1997.
117. Abdel-Wahab O, Gao J, Adli M, et al: Deletion of Asxl1 results in 139. Wlodarska I, Selleri L, La Starza R, et al: Molecular cytogenetics local-
myelodysplasia and severe developmental defects in vivo. J Exp Med izes two new breakpoints on 11q23.3 and 21q11.2 in myelodysplastic
210(12):2641–2659, 2013. syndrome with t(11;21) translocation. Genes Chromosomes Cancer
118. Boultwood J, Perry J, Pellagatti A, et al: Frequent mutation of the 24(3):199–206, 1999.
polycomb-associated gene ASXL1 in the myelodysplastic syndromes 140. Padron E, Yoder S, Kunigal S, et al: ETV6 and signaling gene muta-
and in acute myeloid leukemia. Leukemia 24(5):1062–1065, 2010. tions are associated with secondary transformation of myelodysplastic
119. Carbuccia N, Murati A, Trouplin V, et al: Mutations of ASXL1 gene syndromes to chronic myelomonocytic leukemia. Blood 123(23):3675–
in myeloproliferative neoplasms. Leukemia 23(11):2183–2186, 2009. 3677, 2014.

