Page 1091 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1091

Chapter 60  Myelodysplastic Syndromes  969.e5


            187.  Saumell S, Florensa L, Luño E, et al: Prognostic value of trisomy 8 as a   206.  Rubin CM, Larson RA, Anastasi J, et al: t(3;21)(q26;q22): a recurring
                single anomaly and the influence of additional cytogenetic aberrations   chromosomal abnormality in therapy-related myelodysplastic syndrome
                in primary myelodysplastic syndromes. Br J Haematol 159(3):311–321,   and acute myeloid leukemia. Blood 76(12):2594–2598, 1990.
                2012.                                             207.  Testoni N, Borsaru G, Martinelli G, et al: 3q21 and 3q26 cytogenetic
            188.  Sloand EM, Mainwaring L, Fuhrer M, et al: Preferential suppression   abnormalities  in  acute  myeloblastic  leukemia:  biological  and  clinical
                of  trisomy  8  compared  with  normal  hematopoietic  cell  growth  by   features. Haematologica 84(8):690–694, 1999.
                autologous  lymphocytes  in  patients  with  trisomy  8  myelodysplastic   208.  Gupta M, Ashok Kumar J, Sitaram U, et al: The t(6;9)(p22;q34) in
                syndrome. Blood 106(3):841–851, 2005.                 myeloid  neoplasms:  a  retrospective  study  of  16  cases.  Cancer  Genet
            189.  Nilsson L, Astrand-Grundström I, Anderson K, et al: Involvement and   Cytogenet 203(2):297–302, 2010.
                functional impairment of the CD34(+)CD38(-)Thy-1(+) hematopoi-  209.  Boulais  PE,  Frenette  PS:  Making  sense  of  hematopoietic  stem  cell
                etic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood   niches. Blood 2015.
                100(1):259–267, 2002.                             210.  Kfoury Y, Scadden DT: Mesenchymal Cell Contributions to the Stem
            190.  Sloand EM: Preferential suppression of trisomy 8 compared with normal   Cell Niche. Cell Stem Cell 16(3):239–253, 2015.
                hematopoietic cell growth by autologous lymphocytes in patients with   211.  Verhoef  GE,  De  Schouwer  P,  Ceuppens  JL,  et al:  Measurement  of
                trisomy 8 myelodysplastic syndrome. Blood 106(3):841–851, 2005.  serum  cytokine  levels  in  patients  with  myelodysplastic  syndromes.
            191.  Toyonaga T, Nakase H, Matsuura M, et al: Refractoriness of intestinal   Leukemia 6(12):1268–1272, 1992.
                Behçet’s  disease  with  myelodysplastic  syndrome  involving  trisomy  8   212.  Schipperus MR, Sonneveld P, Lindemans J, et al: The combined effects
                to medical therapies - our case experience and review of the literature.   of Il-3, GM-CSF and G-CSF on the in vitro growth of myelodysplastic
                Digestion 88(4):217–221, 2013.                        myeloid progenitor cells. Leuk Res 14(11–12):1019–1025, 1990.
            192.  Haase D, Germing U, Schanz J, et al: New insights into the prognostic   213.  Vas V, Senger K, Dörr K, et al: Aging of the microenvironment influ-
                impact of the karyotype in MDS and correlation with subtypes: evi-  ences clonality in hematopoiesis. PLoS ONE 7(8):e42080, 2012.
                dence from a core dataset of 2124 patients. Blood 110(13):4385–4395,   214.  Raaijmakers  MHGP,  Mukherjee  S,  Guo  S,  et al:  Bone  progenitor
                2007.                                                 dysfunction induces myelodysplasia and secondary leukaemia. Nature
            193.  Bacher U, Haferlach T, Schnittger S, et al: Investigation of 305 patients   464(7290):852–857, 2010.
                with myelodysplastic syndromes and 20q deletion for associated cyto-  215.  Santamaria  C,  Muntion  S,  Roson  B,  et al:  Impaired  expression  of
                genetic and molecular genetic lesions and their prognostic impact. Br   DICER,  DROSHA,  SBDS  and  some  microRNAs  in  mesenchymal
                J Haematol 164(6):822–833, 2014.                      stromal cells from myelodysplastic syndrome patients.  Haematologica
            194.  Braun T, de Botton S, Taksin A-L, et al: Characteristics and outcome of   97(8):1218–1224, 2012.
                myelodysplastic syndromes (MDS) with isolated 20q deletion: a report   216.  Kode A, Manavalan JS, Mosialou I, et al: Leukaemogenesis induced by
                on 62 cases. Leuk Res 35(7):863–867, 2011.            an activating β-catenin mutation in osteoblasts. Nature 506(7487):240–
            195.  Clarke  M,  Dumon  S,  Ward  C,  et al:  MYBL2  haploinsufficiency   244, 2014.
                increases susceptibility to age-related haematopoietic neoplasia. Leuke-  217.  Warlick  ED,  Miller  JS:  Myelodysplastic  syndromes:  the  role  of  the
                mia 27(3):661–670, 2013.                              immune system in pathogenesis. Leuk Lymphoma 52(11):2045–2049,
            196.  Heinrichs S, Conover LF, Bueso-Ramos CE, et al: MYBL2 is a sub-  2011.
                haploinsufficient tumor suppressor gene in myeloid malignancy. Elife   218.  Wei Y, Dimicoli S, Bueso-Ramos C, et al: Toll-like receptor alterations
                2:e00825, 2013.                                       in myelodysplastic syndrome. Leukemia 27(9):1832–1840, 2013.
            197.  Wang PW, Eisenbart JD, Espinosa R, et al: Refinement of the smallest   219.  Maratheftis  CI,  Andreakos  E,  Moutsopoulos  HM,  et al:  Toll-like
                commonly deleted segment of chromosome 20 in malignant myeloid   receptor-4  is  up-regulated  in  hematopoietic  progenitor  cells  and
                diseases and development of a PAC-based physical and transcription   contributes to increased apoptosis in myelodysplastic syndromes. Clin
                map. Genomics 67(1):28–39, 2000.                      Cancer Res 13(4):1154–1160, 2007.
            198.  Soenen  V,  Preudhomme  C,  Roumier  C,  et al:  17p  Deletion  in   220.  Starczynowski  DT,  Kuchenbauer  F,  Argiropoulos  B,  et al:  Identifica-
                acute  myeloid  leukemia  and  myelodysplastic  syndrome.  Analysis   tion  of  miR-145  and  miR-146a  as  mediators  of  the  5q-  syndrome
                of  breakpoints  and  deleted  segments  by  fluorescence  in  situ.  Blood   phenotype. Nat Med 16(1):49–58, 2010.
                91(3):1008–1015, 1998.                            221.  Keerthivasan  G,  Mei  Y,  Zhao  B,  et al:  Aberrant  overexpression  of
            199.  Jary L, Mossafa H, Fourcade C, et al: The 17p-syndrome: a distinct   CD14 on granulocytes sensitizes the innate immune response in mDia1
                myelodysplastic syndrome entity? Leuk Lymphoma 25(1–2):163–168,   heterozygous del(5q) MDS. Blood 124(5):780–790, 2014.
                1997.                                             222.  Chen X, Eksioglu EA, Zhou J, et al: Induction of myelodysplasia by
            200.  Patnaik MM, Hanson CA, Hodnefield JM, et al: Monosomal karyotype   myeloid-derived  suppressor  cells.  J  Clin  Invest  123(11):4595–4611,
                in myelodysplastic syndromes, with or without monosomy 7 or 5, is   2013.
                prognostically worse than an otherwise complex karyotype. Leukemia   223.  Kristinsson SY, Björkholm M, Hultcrantz M, et al: Chronic immune
                25(2):266–270, 2011.                                  stimulation might act as a trigger for the development of acute myeloid
            201.  Valcarcel D, Adema V, Sole F: Complex, not monosomal, karyotype is   leukemia  or  myelodysplastic  syndromes.  J  Clin  Oncol  29(21):2897–
                the cytogenetic marker of poorest prognosis in patients with primary   2903, 2011.
                myelodysplastic syndrome. J Clin Oncol 31(7):916–922, 2013.  224.  Nand S, Godwin JE: Hypoplastic myelodysplastic syndrome. Cancer
            202.  Wong  AK,  Fang  B,  Zhang  L,  et al:  Loss  of  the  Y  chromosome:  an   62(5):958–964, 1988.
                age-related  or  clonal  phenomenon  in  acute  myelogenous  leukemia/  225.  Epperson DE, Nakamura R, Saunthararajah Y, et al: Oligoclonal T cell
                myelodysplastic syndrome? Arch Pathol Lab Med 132(8):1329–1332,   expansion in myelodysplastic syndrome: evidence for an autoimmune
                2008.                                                 process. Leuk Res 25(12):1075–1083, 2001.
            203.  Pedersen-Bjergaard J, Pedersen M, Roulston D, et al: Different genetic   226.  Anderson RW, Volsky DJ, Greenberg B, et al: Lymphocyte abnormali-
                pathways in leukemogenesis for patients presenting with therapy-related   ties in preleukemia–I. Decreased NK activity, anomalous immunoregu-
                myelodysplasia  and  therapy-related  acute  myeloid  leukemia.  Blood   latory cell subsets and deficient EBV receptors. Leuk Res 7(3):389–395,
                86(9):3542–3552, 1995.                                1983.
            204.  Wlodarska I, Marynen P, La Starza R, et al: The ETV6, CDKN1B and   227.  Knox SJ, Greenberg BR, Anderson RW, et al: Studies of T-lymphocytes
                D12S178 loci are involved in a segment commonly deleted in various   in preleukemic disorders and acute nonlymphocytic leukemia: in vitro
                12p aberration in different hematological malignancies. Cytogenet Cell   radiosensitivity,  mitogenic  responsiveness,  colony  formation,  and
                Genet 72(2–3):229–235, 1996.                          enumeration  of  lymphocytic  subpopulations.  Blood  61(3):449–455,
            205.  Pedersen-Bjergaard  J,  Philip  P:  Balanced  translocations  involving   1983.
                chromosome  bands  11q23  and  21q22  are  highly  characteristic  of   228.  Volsky DJ, Anderson RW: Deficiency in Epstein-Barr virus receptors on
                myelodysplasia and leukemia following therapy with cytostatic agents   B-lymphocytes of preleukemia patients. Cancer Res 43(8):3923–3926,
                targeting at DNA-topoisomerase II. Blood 78(4):1147–1148, 1991.  1983.
   1086   1087   1088   1089   1090   1091   1092   1093   1094   1095   1096