Page 1091 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1091
Chapter 60 Myelodysplastic Syndromes 969.e5
187. Saumell S, Florensa L, Luño E, et al: Prognostic value of trisomy 8 as a 206. Rubin CM, Larson RA, Anastasi J, et al: t(3;21)(q26;q22): a recurring
single anomaly and the influence of additional cytogenetic aberrations chromosomal abnormality in therapy-related myelodysplastic syndrome
in primary myelodysplastic syndromes. Br J Haematol 159(3):311–321, and acute myeloid leukemia. Blood 76(12):2594–2598, 1990.
2012. 207. Testoni N, Borsaru G, Martinelli G, et al: 3q21 and 3q26 cytogenetic
188. Sloand EM, Mainwaring L, Fuhrer M, et al: Preferential suppression abnormalities in acute myeloblastic leukemia: biological and clinical
of trisomy 8 compared with normal hematopoietic cell growth by features. Haematologica 84(8):690–694, 1999.
autologous lymphocytes in patients with trisomy 8 myelodysplastic 208. Gupta M, Ashok Kumar J, Sitaram U, et al: The t(6;9)(p22;q34) in
syndrome. Blood 106(3):841–851, 2005. myeloid neoplasms: a retrospective study of 16 cases. Cancer Genet
189. Nilsson L, Astrand-Grundström I, Anderson K, et al: Involvement and Cytogenet 203(2):297–302, 2010.
functional impairment of the CD34(+)CD38(-)Thy-1(+) hematopoi- 209. Boulais PE, Frenette PS: Making sense of hematopoietic stem cell
etic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood niches. Blood 2015.
100(1):259–267, 2002. 210. Kfoury Y, Scadden DT: Mesenchymal Cell Contributions to the Stem
190. Sloand EM: Preferential suppression of trisomy 8 compared with normal Cell Niche. Cell Stem Cell 16(3):239–253, 2015.
hematopoietic cell growth by autologous lymphocytes in patients with 211. Verhoef GE, De Schouwer P, Ceuppens JL, et al: Measurement of
trisomy 8 myelodysplastic syndrome. Blood 106(3):841–851, 2005. serum cytokine levels in patients with myelodysplastic syndromes.
191. Toyonaga T, Nakase H, Matsuura M, et al: Refractoriness of intestinal Leukemia 6(12):1268–1272, 1992.
Behçet’s disease with myelodysplastic syndrome involving trisomy 8 212. Schipperus MR, Sonneveld P, Lindemans J, et al: The combined effects
to medical therapies - our case experience and review of the literature. of Il-3, GM-CSF and G-CSF on the in vitro growth of myelodysplastic
Digestion 88(4):217–221, 2013. myeloid progenitor cells. Leuk Res 14(11–12):1019–1025, 1990.
192. Haase D, Germing U, Schanz J, et al: New insights into the prognostic 213. Vas V, Senger K, Dörr K, et al: Aging of the microenvironment influ-
impact of the karyotype in MDS and correlation with subtypes: evi- ences clonality in hematopoiesis. PLoS ONE 7(8):e42080, 2012.
dence from a core dataset of 2124 patients. Blood 110(13):4385–4395, 214. Raaijmakers MHGP, Mukherjee S, Guo S, et al: Bone progenitor
2007. dysfunction induces myelodysplasia and secondary leukaemia. Nature
193. Bacher U, Haferlach T, Schnittger S, et al: Investigation of 305 patients 464(7290):852–857, 2010.
with myelodysplastic syndromes and 20q deletion for associated cyto- 215. Santamaria C, Muntion S, Roson B, et al: Impaired expression of
genetic and molecular genetic lesions and their prognostic impact. Br DICER, DROSHA, SBDS and some microRNAs in mesenchymal
J Haematol 164(6):822–833, 2014. stromal cells from myelodysplastic syndrome patients. Haematologica
194. Braun T, de Botton S, Taksin A-L, et al: Characteristics and outcome of 97(8):1218–1224, 2012.
myelodysplastic syndromes (MDS) with isolated 20q deletion: a report 216. Kode A, Manavalan JS, Mosialou I, et al: Leukaemogenesis induced by
on 62 cases. Leuk Res 35(7):863–867, 2011. an activating β-catenin mutation in osteoblasts. Nature 506(7487):240–
195. Clarke M, Dumon S, Ward C, et al: MYBL2 haploinsufficiency 244, 2014.
increases susceptibility to age-related haematopoietic neoplasia. Leuke- 217. Warlick ED, Miller JS: Myelodysplastic syndromes: the role of the
mia 27(3):661–670, 2013. immune system in pathogenesis. Leuk Lymphoma 52(11):2045–2049,
196. Heinrichs S, Conover LF, Bueso-Ramos CE, et al: MYBL2 is a sub- 2011.
haploinsufficient tumor suppressor gene in myeloid malignancy. Elife 218. Wei Y, Dimicoli S, Bueso-Ramos C, et al: Toll-like receptor alterations
2:e00825, 2013. in myelodysplastic syndrome. Leukemia 27(9):1832–1840, 2013.
197. Wang PW, Eisenbart JD, Espinosa R, et al: Refinement of the smallest 219. Maratheftis CI, Andreakos E, Moutsopoulos HM, et al: Toll-like
commonly deleted segment of chromosome 20 in malignant myeloid receptor-4 is up-regulated in hematopoietic progenitor cells and
diseases and development of a PAC-based physical and transcription contributes to increased apoptosis in myelodysplastic syndromes. Clin
map. Genomics 67(1):28–39, 2000. Cancer Res 13(4):1154–1160, 2007.
198. Soenen V, Preudhomme C, Roumier C, et al: 17p Deletion in 220. Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al: Identifica-
acute myeloid leukemia and myelodysplastic syndrome. Analysis tion of miR-145 and miR-146a as mediators of the 5q- syndrome
of breakpoints and deleted segments by fluorescence in situ. Blood phenotype. Nat Med 16(1):49–58, 2010.
91(3):1008–1015, 1998. 221. Keerthivasan G, Mei Y, Zhao B, et al: Aberrant overexpression of
199. Jary L, Mossafa H, Fourcade C, et al: The 17p-syndrome: a distinct CD14 on granulocytes sensitizes the innate immune response in mDia1
myelodysplastic syndrome entity? Leuk Lymphoma 25(1–2):163–168, heterozygous del(5q) MDS. Blood 124(5):780–790, 2014.
1997. 222. Chen X, Eksioglu EA, Zhou J, et al: Induction of myelodysplasia by
200. Patnaik MM, Hanson CA, Hodnefield JM, et al: Monosomal karyotype myeloid-derived suppressor cells. J Clin Invest 123(11):4595–4611,
in myelodysplastic syndromes, with or without monosomy 7 or 5, is 2013.
prognostically worse than an otherwise complex karyotype. Leukemia 223. Kristinsson SY, Björkholm M, Hultcrantz M, et al: Chronic immune
25(2):266–270, 2011. stimulation might act as a trigger for the development of acute myeloid
201. Valcarcel D, Adema V, Sole F: Complex, not monosomal, karyotype is leukemia or myelodysplastic syndromes. J Clin Oncol 29(21):2897–
the cytogenetic marker of poorest prognosis in patients with primary 2903, 2011.
myelodysplastic syndrome. J Clin Oncol 31(7):916–922, 2013. 224. Nand S, Godwin JE: Hypoplastic myelodysplastic syndrome. Cancer
202. Wong AK, Fang B, Zhang L, et al: Loss of the Y chromosome: an 62(5):958–964, 1988.
age-related or clonal phenomenon in acute myelogenous leukemia/ 225. Epperson DE, Nakamura R, Saunthararajah Y, et al: Oligoclonal T cell
myelodysplastic syndrome? Arch Pathol Lab Med 132(8):1329–1332, expansion in myelodysplastic syndrome: evidence for an autoimmune
2008. process. Leuk Res 25(12):1075–1083, 2001.
203. Pedersen-Bjergaard J, Pedersen M, Roulston D, et al: Different genetic 226. Anderson RW, Volsky DJ, Greenberg B, et al: Lymphocyte abnormali-
pathways in leukemogenesis for patients presenting with therapy-related ties in preleukemia–I. Decreased NK activity, anomalous immunoregu-
myelodysplasia and therapy-related acute myeloid leukemia. Blood latory cell subsets and deficient EBV receptors. Leuk Res 7(3):389–395,
86(9):3542–3552, 1995. 1983.
204. Wlodarska I, Marynen P, La Starza R, et al: The ETV6, CDKN1B and 227. Knox SJ, Greenberg BR, Anderson RW, et al: Studies of T-lymphocytes
D12S178 loci are involved in a segment commonly deleted in various in preleukemic disorders and acute nonlymphocytic leukemia: in vitro
12p aberration in different hematological malignancies. Cytogenet Cell radiosensitivity, mitogenic responsiveness, colony formation, and
Genet 72(2–3):229–235, 1996. enumeration of lymphocytic subpopulations. Blood 61(3):449–455,
205. Pedersen-Bjergaard J, Philip P: Balanced translocations involving 1983.
chromosome bands 11q23 and 21q22 are highly characteristic of 228. Volsky DJ, Anderson RW: Deficiency in Epstein-Barr virus receptors on
myelodysplasia and leukemia following therapy with cytostatic agents B-lymphocytes of preleukemia patients. Cancer Res 43(8):3923–3926,
targeting at DNA-topoisomerase II. Blood 78(4):1147–1148, 1991. 1983.

