Page 1607 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1607

1431.e2  Part VII  Hematologic Malignancies


         46.  Loiarro M, Gallo G, Fanto N, et al: Identification of critical residues of   71.  Dellagi K, Dupouey P, Brouet JC, et al: Waldenström’s macroglobulin-
            the MYD88 death domain involved in the recruitment of downstream   emia and peripheral neuropathy: a clinical and immunologic study of
            kinases. J Biol Chem 284:28093, 2009.                 25 patients. Blood 62:280, 1983.
         47.  Lin SC, Lo YC, Wu H: Helical assembly in the MYD88-IRAK4-IRAK2   72.  Nobile-Orazio E, Marmiroli P, Baldini L, et al: Peripheral neuropathy
            complex in TLR/IL-1R signaling. Nature 465:885, 2010.  in macroglobulinemia: Incidence and antigen-specificity of M proteins.
         48.  Kawagoe T, Sato S, Matsushita K, et al: Sequential control of Toll-like   Neurology 37:1506, 1987.
            receptor  dependent  responses  by  IRAK1  and  IRAK2.  Nat  Immunol   73.  Treon  SP,  Hanzis  C,  Ioakimidis  L,  et al:  Clinical  characteristics
            9:684, 2008.                                          and  treatment  outcome  of  disease-related  peripheral  neuropathy  in
         49.  Leleu X, Eeckhoute J, Jia X, et al: Targeting NF-κB in Waldenström   Waldenström’s macroglobulinemia (WM) [abstract 8114]. J Clin Oncol
            macroglobulinemia. Blood 111:5068, 2008.              28(Suppl):15s, 2010.
         50.  Treon  SP,  Cao  Y,  Xu  L,  et al:  Somatic  mutations  in  MYD88  and   74.  Nemni  R,  Gerosa  E,  Piccolo  G,  et al:  Neuropathies  associated  with
            CXCR4 are determinants of clinical presentation and overall survival   monoclonal gammopathies. Haematologica 79:557, 1994.
            in Waldenström macroglobulinemia. Blood 123:2791, 2014.  75.  Ropper  AH,  Gorson  KC:  Neuropathies  associated  with  paraprotein-
         51.  Roccaro A, Sacco A, Jiminez C, et al: C1013G/CXCR4 acts as a driver   emia. N Engl J Med 338:1601, 1998.
            mutation  of  tumor  progression  and  modulator  of  drug  resistance  in   76.  Vital A: Paraproteinemic neuropathies. Brain Pathol 11:399, 2001.
            lymphoplasmacytic lymphoma. Blood 123:4120, 2014.  77.  Latov N, Braun PE, Gross RB, et al: Plasma cell dyscrasia and peripheral
         52.  Poulain S, Roumier C, Doye E, et al: Genomic landscape of CXCR4   neuropathy: identification of the myelin antigens that react with human
            mutations in Waldenström’s macroglobulinemia [abstract 1610]. Blood   paraproteins. Proc Natl Acad Sci USA 78:7139, 1981.
            124:1627, 2014.                                    78.  Chassande B, Leger JM, Younes-Chennoufi AB, et al: Peripheral neu-
         53.  Busillo JM, Amando S, Sengupta R, et al: Site-specific phosphorylation   ropathy  associated  with  IgM  monoclonal  gammopathy:  correlations
            of CXCR4 is dynamically regulated by multiple kinases and results in   between M-protein antibody activity and clinical/electrophysiological
            differential modulation of CXCR4 signaling. J Biol Chem 285:7805,   features in 40 cases. Muscle Nerve 21:55, 1998.
            2010.                                              79.  Weiss MD, Dalakas MC, Lauter CJ, et al: Variability in the binding of
         54.  Dotta L, Tassone L, Badolato R: Clinical and genetic features of warts,   anti-MAG and anti-SGPG antibodies to target antigens in demyelinating
            hypogammaglobulinemia,  infections  and  myelokathexis  (WHIM)   neuropathy and IgM paraproteinemia. J Neuroimmunol 95:174, 1999.
            syndrome. Curr Mol Med 11:317, 2011.               80.  Latov  N,  Hays  AP,  Sherman  WH:  Peripheral  neuropathy  and  anti-
         55.  Cao Y, Hunter ZR, Liu X, et al: The WHIM-like CXCR4 S338X  somatic   MAG antibodies. Crit Rev Neurobiol 3:301, 1988.
            mutation activates AKT and ERK, and promotes resistance to ibrutinib   81.  Dalakas MC, Quarles RH: Autoimmune ataxic neuropathies (sensory
            and other agents used in the treatment of Waldenström’s macroglobu-  ganglionopathies):  are  glycolipids  the  responsible  autoantigens?  Ann
            linemia. Leukemia 29:169, 2015.                       Neurol 39:419, 1996.
         56.  Cao Y, Hunter ZR, Liu X, et al: CXCR4 WHIM-like frameshift and   82.  Eurelings  M,  Ang  CW,  Notermans  NC,  et al:  Antiganglioside  anti-
            nonsense mutations promote ibrutinib resistance but do not supplant   bodies  in  polyneuropathy  associated  with  monoclonal  gammopathy.
            MYD88 L265P directed signaling in Waldenström macroglobulinaemia   Neurology 57:1909, 2001.
            cells. Br J Haematol 168:701, 2015.                83.  Ilyas AA, Quarles RH, Dalakas MC, et al: Monoclonal IgM in a patient
         57.  Tournilhac  O,  Santos  DD,  Xu  L,  et al:  Mast  cells  in Waldenström’s   with paraproteinemic polyneuropathy binds to gangliosides containing
            macroglobulinemia  support  lymphoplasmacytic  cell  growth  through   disialosyl groups. Ann Neurol 18:655, 1985.
            CD154/CD40 signaling. Ann Oncol 17:1275, 2006.     84.  Willison HJ, O’Leary CP, Veitch J, et al: The clinical and laboratory
         58.  Zhou Y, Liu X, Xu L, et al: Matrix metalloproteinase-8 is overexpressed   features of chronic sensory ataxic neuropathy with anti-disialosyl IgM
            in Waldenström’s  macroglobulinemia cells, and  specific  inhibition  of   antibodies. Brain 124:1968, 2001.
            this metalloproteinase blocks release of soluble CD27. Clin Lymphoma   85.  Lopate  G,  Choksi  R,  Pestronk  A:  Severe  sensory  ataxia  and  demy-
            Myeloma Leuk 11:172, 2011.                            elinating  polyneuropathy  with  IgM  anti-GM 2  and  GalNAc-GD1A
         59.  Ngo HT, Leleu X, Lee J, et al: SDF-1/CXCR4 and VLA-4 interaction   antibodies. Muscle Nerve 25:828, 2002.
            regulates homing in Waldenström macroglobulinemia. Blood 112:150,   86.  Jacobs BC, O’Hanlon GM, Breedland EG, et al: Human IgM para-
            2008.                                                 proteins  demonstrate  shared  reactivity  between  Campylobacter  jejuni
         60.  Ho AW, Hatjiharissi E, Ciccarelli BT, et al: CD27-CD70 interactions in   lipopolysaccharides and human peripheral nerve disialylated ganglio-
            the pathogenesis of Waldenström macroglobulinemia. Blood 112:4683,   sides. J Neuroimmunol 80:23, 1997.
            2008.                                              87.  Nobile-Orazio E, Manfredini E, Carpo M, et al: Frequency and clinical
         61.  Merlini G, Farhangi M, Osserman EF: Monoclonal immunoglobulins   correlates of antineural IgM antibodies in neuropathy associated with
            with  antibody  activity  in  myeloma,  macroglobulinemia  and  related   IgM monoclonal gammopathy. Ann Neurol 36:416, 1994.
            plasma cell dyscrasias. Semin Oncol 13:350, 1986.  88.  Gordon  PH,  Rowland  LP,  Younger  DS,  et al:  Lymphoproliferative
         62.  Farhangi  M,  Merlini  G:  The  clinical  implications  of  monoclonal   disorders  and  motor  neuron  disease:  an  update.  Neurology  48:1671,
            immunoglobulins. Semin Oncol 13:366, 1986.            1997.
         63.  Marmont AM, Merlini G: Monoclonal autoimmunity in hematology.   89.  Pavord SR, Murphy PT, Mitchell VE: POEMS syndrome and Walden-
            Haematologica 76:449, 1991.                           ström’s macroglobulinaemia. J Clin Pathol 49:181, 1996.
         64.  Mackenzie MR, Babcock J: Studies of the hyperviscosity syndrome. II:   90.  Crisp  D,  Pruzanski  W:  B-cell  neoplasms  with  homogeneous  cold-
            Macroglobulinemia. J Lab Clin Med 85:227, 1975.       reacting antibodies (cold agglutinins). Am J Med 72:915, 1982.
         65.  Gertz MA, Kyle RA: Hyperviscosity syndrome. J Intensive Care Med   91.  Pruzanski W, Shumak KH: Biologic activity of cold-reacting autoanti-
            10:128, 1995.                                         bodies (first of two parts). N Engl J Med 297:538, 1977.
         66.  Kwaan HC, Bongu A: The hyperviscosity syndromes. Semin Thromb   92.  Pruzanski W, Shumak KH: Biologic activity of cold-reacting autoanti-
            Hemost 25:199, 1999.                                  bodies (second of two parts). N Engl J Med 297:583, 1977.
         67.  Singh A, Eckardt KU, Zimmermann A, et al: Increased plasma viscosity   93.  Whittaker SJ, Bhogal BS, Black MM: Acquired immunobullous disease:
            as  a  reason  for  inappropriate  erythropoietin  formation.  J  Clin  Invest   a cutaneous manifestation of IgM macroglobulinaemia. Br J Dermatol
            91:251, 1993.                                         135:283, 1996.
         68.  Menke  MN,  Feke  GT,  McMeel  JW,  et al:  Hyperviscosity-related   94.  Daoud MS, Lust JA, Kyle RA, et al: Monoclonal gammopathies and
            retinopathy  in  Waldenström’s  macroglobulinemia.  Arch  Ophthalmol   associated skin disorders. J Am Acad Dermatol 40:507, 1999.
            124:1601, 2006.                                    95.  Gad A, Willen R, Carlen B, et al: Duodenal involvement in Walden-
         69.  Merlini G, Baldini L, Broglia C, et al: Prognostic factors in symptom-  ström’s macroglobulinemia. J Clin Gastroenterol 20:174, 1995.
            atic Waldenström’s macroglobulinemia. Semin Oncol 30:211, 2003.  96.  Amrein PC, Compton CC: Case 3-1990—a 66-year-old woman with
         70.  Stone MJ: Waldenström’s macroglobulinemia: hyperviscosity syndrome   Waldenström’s  macroglobulinemia,  diarrhea,  anemia,  and  persistent
            and cryoglobulinemia. Clin Lymphoma Myeloma 9:97, 2009.  gastrointestinal bleeding. N Engl J Med 322:183, 1990.
   1602   1603   1604   1605   1606   1607   1608   1609   1610   1611   1612