Page 1834 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1834

1632.e4  Part X  Transplantation


        123.  Maguire HC, Jr, Maibach HI, Minisce LW, Jr: Inhibition of guinea pig   143.  Chen BJ, Cui X, Liu C, et al: Prevention of graft-versus-host disease
            anaphylactic sensitization with cyclophosphoramide. J Invest Dermatol   while  preserving  graft-versus-leukemia  effect  after  selective  depletion
            36:235–236, 1961.                                     of host-reactive T cells by photodynamic cell purging process. Blood
        124.  Berenbaum  MC,  Brown  IN:  Prolongation  of  homograft  survival  in   99(9):3083–3088, 2002.
            mice with single doses of cyclophosphamide. Nature 200:84, 1963.  144.  Guimond M, Balassy A, Barrette M, et al: P-glycoprotein targeting: a
        125.  Mayumi  H,  Tokunaga  K:  Cyclophosphamide-induced  chimera-type   unique strategy to selectively eliminate immunoreactive T cells. Blood
            tolerance  to  allografts:  an  overview  of  drug-induced  immunological   100(2):375–382, 2002.
            tolerance. Fukuoka Igaku Zasshi 81(1):20–39, 1990.  145.  Bastien  JP,  Krosl  G,  Therien  C,  et al:  Photodepletion  differentially
                                                                          +
                                                                                        +
        126.  Mayumi  H,  Umesue  M,  Nomoto  K:  Cyclophosphamide-induced   affects  CD4  Tregs  versus  CD4   effector T  cells  from  patients  with
            immunological tolerance: an overview. Immunobiology 195(2):129–139,   chronic graft-versus-host disease. Blood 116(23):4859–4869, 2010.
            1996.                                             146.  Bastien JP, Roy J, Roy DC: Selective T-cell depletion for haplotype-
        127.  Eto  M,  Mayumi  H,  Tomita  Y,  et al:  Sequential  mechanisms  of   mismatched  allogeneic  stem  cell  transplantation.  Semin  Oncol
            cyclophosphamide-induced  skin  allograft  tolerance  including  the   39(6):674–682, 2012.
            intrathymic clonal deletion followed by late breakdown of the clonal   147.  O’Donnell  PV,  Luznik  L,  Jones  RJ,  et al:  Nonmyeloablative  bone
            deletion. J Immunol 145(5):1303–1310, 1990.           marrow transplantation from partially HLA-mismatched related donors
        128.  Kong YY, Eto M, Omoto K, et al: Regulatory T cells in maintenance and   using posttransplantation cyclophosphamide. Biol Blood Marrow Trans-
            reversal of peripheral tolerance in vivo. J Immunol 157(12):5284–5289,   plant 8(7):377–386, 2002.
            1996.                                             148.  Luznik L, O’Donnell PV, Symons HJ, et al: HLA-haploidentical bone
        129.  Nomoto K, Eto M, Yanaga K, et al: Interference with cyclophosphamide-  marrow  transplantation  for  hematologic  malignancies  using  nonmy-
            induced  skin  allograft  tolerance  by  cyclosporin  A.  J  Immunol   eloablative conditioning and high-dose, posttransplantation cyclophos-
            149(8):2668–2674, 1992.                               phamide. Biol Blood Marrow Transplant 14(6):641–650, 2008.
        130.  Dukor P, Dietrich FM: Prevention of cyclophosphamide-induced toler-  149.  Luznik  L,  O’Donnell  PV,  Fuchs  EJ:  Post-transplantation  cyclophos-
            ance to erythrocytes by pretreatment with cortisone. Proc Soc Exp Biol   phamide for tolerance induction in HLA-haploidentical bone marrow
            Med 133(1):280–285, 1970.                             transplantation. Semin Oncol 39(6):683–693, 2012.
        131.  Nishimura  Y,  Mayumi  H,  Tomita  Y,  et al:  Recombinant  human   150.  Munchel  A,  Kesserwan  C,  Symons  HJ,  et al:  Nonmyeloablative,
            granulocyte colony-stimulating factor improves the compromised state   HLA-haploidentical  bone  marrow  transplantation  with  high  dose,
            of  recipient  mice  without  affecting  the  induction  of  specific  toler-  post-transplantation  cyclophosphamide.  Pediatr  Rep  3(Suppl  2):e15,
            ance  in  the  cyclophosphamide-induced  tolerance  system.  J  Immunol   2011.
            146(8):2639–2647, 1991.                           151.  Kasamon  YL,  Luznik  L,  Leffell  MS,  et al:  Nonmyeloablative  HLA-
        132.  Colson  YL,  Wren  SM,  Schuchert  MJ,  et al:  A  nonlethal  condition-  haploidentical bone marrow transplantation with high-dose posttrans-
            ing  approach  to  achieve  durable  multilineage  mixed  chimerism  and   plantation cyclophosphamide: effect of HLA disparity on outcome. Biol
            tolerance  across  major,  minor,  and  hematopoietic  histocompatibility   Blood Marrow Transplant 16(4):482–489, 2010.
            barriers. J Immunol 155(9):4179–4188, 1995.       152.  McCurdy SR, Kanakry JA, Showel MM, et al: Risk-stratified outcomes
        133.  Luznik L, Jalla S, Engstrom LW, et al: Durable engraftment of major   of nonmyeloablative, HLA-haploidentical BMT with high-dose post-
            histocompatibility complex-incompatible cells after nonmyeloablative   transplantation cyclophosphamide. Blood 125:3024, 2015.
            conditioning  with  fludarabine,  low-dose  total  body  irradiation,  and   153.  Raiola  A,  Dominietto  A,  Varaldo  R,  et al:  Unmanipulated  haploi-
            posttransplantation  cyclophosphamide.  Blood  98(12):3456–3464,   dentical  BMT  following  non-myeloablative  conditioning  and  post-
            2001.                                                 transplantation CY for advanced Hodgkin’s lymphoma. Bone Marrow
        134.  Colson YL, Li H, Boggs SS, et al: Durable mixed allogeneic chimerism   Transplant 49:190, 2014.
            and tolerance by a nonlethal radiation-based cytoreductive approach.     154.  Solomon SR, Sizemore CA, Sanacore M, et al: Haploidentical trans-
            J Immunol 157(7):2820–2829, 1996.                     plantation using T cell replete peripheral blood stem cells and myeloab-
        135.  Luznik  L,  Engstrom  LW,  Iannone  R,  et al:  Posttransplantation   lative conditioning in patients with high-risk hematologic malignancies
            cyclophosphamide facilitates engraftment of major histocompatibility   who lack conventional donors is well tolerated and produces excellent
            complex-identical  allogeneic  marrow  in  mice  conditioned  with  low-  relapse-free survival: results of a prospective phase II trial. Biol Blood
            dose  total  body  irradiation.  Biol  Blood  Marrow  Transplant  8:131,   Marrow Transplant 18(12):1859–1866, 2012.
            2002.                                             155.  Solomon SR, Sizemore CA, Sanacore M, et al: Total body irradiation-
        136.  Ross D, Jones M, Komanduri K, et al: Antigen and lymphopenia-driven   based myeloablative haploidentical stem cell transplantation is a safe
            donor  T  cells  are  differentially  diminished  by  post-transplantation   and effective alternative to unrelated donor transplantation in patients
            administration of cyclophosphamide after hematopoietic cell transplan-  without matched sibling donors. Biol Blood Marrow Transplant 21:1299,
            tation. Biol Blood Marrow Transplant 19(10):1430–1438, 2013.  2015.
                                                          +
        137.  Ganguly  S,  Ross  DB,  Panoskaltsis-Mortari  A,  et al:  Donor  CD4    156.  Grosso D, Carabasi M, Filicko-O’Hara J, et al: A 2-step approach to
                +
            Foxp3   regulatory  T  cells  are  necessary  for  posttransplantation   myeloablative haploidentical stem cell transplantation: a phase 1/2 trial
            cyclophosphamide-mediated protection against GVHD in mice. Blood   performed  with  optimized T-cell  dosing.  Blood  118(17):4732–4739,
            124(13):2131–2141, 2014.                              2011.
        138.  Kanakry CG, Ganguly S, Zahurak M, et al: Aldehyde dehydrogenase   157.  Grosso  D,  Gaballa  S,  Alpdogan  O,  et al:  A  two-step  approach  to
            expression drives human regulatory T cell resistance to posttransplanta-  myeloablative haploidentical transplantation: low nonrelapse mortality
            tion cyclophosphamide. Sci Transl Med 5:211ra157, 2013.  and high survival confirmed in patients with earlier stage disease. Biol
        139.  Emadi A, Jones RJ, Brodsky RA: Cyclophosphamide and cancer: golden   Blood Marrow Transplant 21:646, 2015.
            anniversary. Nat Rev Clin Oncol 6(11):638–647, 2009.  158.  Raj K, Pagliuca A, Bradstock K, et al: Peripheral blood hematopoietic
        140.  Darrasse-Jèze  G,  Bergot  AS,  Durgeau  A,  et al: Tumor  emergence  is   stem cells for transplantation of hematological diseases from related,
                               hi
            sensed by self-specific CD44  memory Tregs that create a dominant   haploidentical donors after reduced-intensity conditioning. Biol Blood
            tolerogenic environment for tumors in mice. J Clin Invest 119(9):2648–  Marrow Transplant 20(6):890–895, 2014.
            2662, 2009.                                       159.  Castagna L, Crocchiolo R, Furst S, et al: Bone marrow compared with
        141.  Stokes  J,  Hoffman  EA,  Zeng  Y,  et al:  Post-transplant  bendamustine   peripheral  blood  stem  cells  for  haploidentical  transplantation  with  a
            reduces GvHD while preserving GvL in experimental haploidentical   nonmyeloablative  conditioning  regimen  and  post-transplantation
            bone marrow transplantation. Br J Haematol 174(1):102–116, 2016.  cyclophosphamide.  Biol  Blood  Marrow  Transplant  20(5):724–729,
        142.  Andre-Schmutz  I,  Le  Deist  F,  Hacein-Bey-Abina  S,  et al:  Immune   2014.
            reconstitution  without  graft-versus-host  disease  after  haemopoietic   160.  Anasetti C, Logan BR, Lee SJ, et al: Peripheral-blood stem cells versus
            stem-cell transplantation: a phase 1/2 study. Lancet 360(9327):130–137,   bone marrow from unrelated donors. N Engl J Med 367(16):1487–1496,
            2002.                                                 2012.
   1829   1830   1831   1832   1833   1834   1835   1836   1837   1838   1839